These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 37338604)

  • 1. MIL-101(Cr) molecular cage anchored on 2D Ti
    Zhang L; Li C; Chen Y; Li S; Li F; Wu X; Gui T; Cao Z; Wang Y
    Mikrochim Acta; 2023 Jun; 190(7):267. PubMed ID: 37338604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile design of FeCu metal-organic frameworks anchored on layer Ti
    Zhang L; Han Y; Sun M; Li F; Li S; Gui T
    Talanta; 2024 Aug; 275():126100. PubMed ID: 38626498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Follow up of the prostate cancer treatment based on a novel sensing method for anti-prostate cancer drug (flutamide).
    Tan X; Namadchian M; Baghayeri M
    Environ Res; 2023 Dec; 238(Pt 2):117261. PubMed ID: 37775004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free-electrodeposited anodic stripping voltammetry sensing of Cu(II) based on Ti
    Xia Y; Ma Y; Wu Y; Yi Y; Lin H; Zhu G
    Mikrochim Acta; 2021 Oct; 188(11):377. PubMed ID: 34643816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly selective detection of adenine and guanine by NH
    Chen J; Li S; Chen Y; Yang J; Dong J
    Mikrochim Acta; 2022 Aug; 189(9):328. PubMed ID: 35962293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic MXene-based molecularly imprinted electrochemical sensor for methylmalonic acid.
    Xing Y; Ding X; Liang X; Liu G; Hou S; Hou S
    Mikrochim Acta; 2023 May; 190(6):208. PubMed ID: 37165282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crumpled MXene nanosheets for sensing of ascorbic acid in food, biological fluids, and erythrocytes in-vitro microenvironment.
    Zaidi SA; Sheikh H; Al-Mahasna M; Elsin F
    Int J Biol Macromol; 2023 Sep; 249():126024. PubMed ID: 37506798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A non-enzymatic voltammetric xanthine sensor based on the use of platinum nanoparticles loaded with a metal-organic framework of type MIL-101(Cr). Application to simultaneous detection of dopamine, uric acid, xanthine and hypoxanthine.
    Zhang L; Li S; Xin J; Ma H; Pang H; Tan L; Wang X
    Mikrochim Acta; 2018 Dec; 186(1):9. PubMed ID: 30535722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-Step Electrodeposition Synthesized Aunps/Mxene/ERGO for Selectivity Nitrite Sensing.
    Wang T; Wang C; Xu X; Li Z; Li D
    Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitive Electrochemical Sensor Based On an Aminated MIL-101(Cr) MOF for the Detection of Tartrazine.
    Massah RT; Zambou Jiokeng SL; Liang J; Njanja E; Ma Ntep TM; Spiess A; Rademacher L; Janiak C; Tonle IK
    ACS Omega; 2022 Jun; 7(23):19420-19427. PubMed ID: 35721937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasensitive determination of nitrite based on electrochemical platform of AuNPs deposited on PDDA-modified MXene nanosheets.
    Wang Y; Zeng Z; Qiao J; Dong S; Liang Q; Shao S
    Talanta; 2021 Jan; 221():121605. PubMed ID: 33076135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A sensing platform based on Cu-MOF encapsulated Dawson-type polyoxometalate crystal material for electrochemical detection of xanthine.
    Zhang L; Li C; Li F; Li S; Ma H; Gu F
    Mikrochim Acta; 2022 Dec; 190(1):24. PubMed ID: 36515741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-biofouling Ti
    Zhang L; Li C; Yang Y; Han J; Huang W; Zhou J; Zhang Y
    Talanta; 2022 Sep; 247():123614. PubMed ID: 35653861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MXene-based enzymatic sensor for highly sensitive and selective detection of cholesterol.
    Xia T; Liu G; Wang J; Hou S; Hou S
    Biosens Bioelectron; 2021 Jul; 183():113243. PubMed ID: 33866135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of 2D Graphene/MXene nanocomposite for the electrochemical determination of hazardous bisphenol A in plastic products.
    Rajendran J; Kannan TS; Dhanasekaran LS; Murugan P; Atchudan R; ALOthman ZA; Ouladsmane M; Sundramoorthy AK
    Chemosphere; 2022 Jan; 287(Pt 2):132106. PubMed ID: 34507149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly electrochemically active Ti
    Mari E; Duraisamy M; Eswaran M; Sellappan S; Won K; Chandra P; Tsai PC; Huang PC; Chen YH; Lin YC; Ponnusamy VK
    Mikrochim Acta; 2024 Mar; 191(4):212. PubMed ID: 38509344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical activation of oxygen vacancy-rich TiO
    Yang J; Deng C; Zhong W; Peng G; Zou J; Lu Y; Gao Y; Li M; Zhang S; Lu L
    Mikrochim Acta; 2023 Mar; 190(4):146. PubMed ID: 36943487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cu
    Feng L; Chen J; Yang M; Wang J; Yin S; Zhang D; Qin W; Song J
    Mikrochim Acta; 2024 Jul; 191(8):451. PubMed ID: 38970693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of high-performance cell-imprinted polymers based on AuNPs/MXene composites
    Cui A; Meng P; Hu J; Yang H; Yang Z; Li H; Sun Y
    Analyst; 2023 Feb; 148(5):1058-1067. PubMed ID: 36728941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-Dimensional Nickel Porphyrinic Metal-Organic Framework-Modified Electrode for Electrochemical Sensing.
    Boakye A; Yu K; Chai H; Xu T; Houston LS; Asinyo BK; Zhang X; Zhang G; Qu L
    Langmuir; 2024 Feb; 40(5):2708-2718. PubMed ID: 38277771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.