These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 37338987)
1. Comparison of Imputation Strategies for Incomplete Longitudinal Data in Life-Course Epidemiology. Shaw C; Wu Y; Zimmerman SC; Hayes-Larson E; Belin TR; Power MC; Glymour MM; Mayeda ER Am J Epidemiol; 2023 Nov; 192(12):2075-2084. PubMed ID: 37338987 [TBL] [Abstract][Full Text] [Related]
2. Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study. Marshall A; Altman DG; Royston P; Holder RL BMC Med Res Methodol; 2010 Jan; 10():7. PubMed ID: 20085642 [TBL] [Abstract][Full Text] [Related]
3. Multiple imputation methods for handling missing values in a longitudinal categorical variable with restrictions on transitions over time: a simulation study. De Silva AP; Moreno-Betancur M; De Livera AM; Lee KJ; Simpson JA BMC Med Res Methodol; 2019 Jan; 19(1):14. PubMed ID: 30630434 [TBL] [Abstract][Full Text] [Related]
4. A comparison of multiple imputation methods for handling missing values in longitudinal data in the presence of a time-varying covariate with a non-linear association with time: a simulation study. De Silva AP; Moreno-Betancur M; De Livera AM; Lee KJ; Simpson JA BMC Med Res Methodol; 2017 Jul; 17(1):114. PubMed ID: 28743256 [TBL] [Abstract][Full Text] [Related]
5. A comparison of multiple imputation methods for missing data in longitudinal studies. Huque MH; Carlin JB; Simpson JA; Lee KJ BMC Med Res Methodol; 2018 Dec; 18(1):168. PubMed ID: 30541455 [TBL] [Abstract][Full Text] [Related]
6. Comparison of imputation methods for handling missing covariate data when fitting a Cox proportional hazards model: a resampling study. Marshall A; Altman DG; Holder RL BMC Med Res Methodol; 2010 Dec; 10():112. PubMed ID: 21194416 [TBL] [Abstract][Full Text] [Related]
7. Multiple imputation of missing data under missing at random: compatible imputation models are not sufficient to avoid bias if they are mis-specified. Curnow E; Carpenter JR; Heron JE; Cornish RP; Rach S; Didelez V; Langeheine M; Tilling K J Clin Epidemiol; 2023 Aug; 160():100-109. PubMed ID: 37343895 [TBL] [Abstract][Full Text] [Related]
8. A wide range of missing imputation approaches in longitudinal data: a simulation study and real data analysis. Jahangiri M; Kazemnejad A; Goldfeld KS; Daneshpour MS; Mostafaei S; Khalili D; Moghadas MR; Akbarzadeh M BMC Med Res Methodol; 2023 Jul; 23(1):161. PubMed ID: 37415114 [TBL] [Abstract][Full Text] [Related]
9. Multiple imputation using auxiliary imputation variables that only predict missingness can increase bias due to data missing not at random. Curnow E; Cornish RP; Heron JE; Carpenter JR; Tilling K BMC Med Res Methodol; 2024 Oct; 24(1):231. PubMed ID: 39375597 [TBL] [Abstract][Full Text] [Related]
10. Does pattern mixture modelling reduce bias due to informative attrition compared to fitting a mixed effects model to the available cases or data imputed using multiple imputation?: a simulation study. Welch CA; Sabia S; Brunner E; Kivimäki M; Shipley MJ BMC Med Res Methodol; 2018 Aug; 18(1):89. PubMed ID: 30157752 [TBL] [Abstract][Full Text] [Related]
11. Multiple imputation for patient reported outcome measures in randomised controlled trials: advantages and disadvantages of imputing at the item, subscale or composite score level. Rombach I; Gray AM; Jenkinson C; Murray DW; Rivero-Arias O BMC Med Res Methodol; 2018 Aug; 18(1):87. PubMed ID: 30153796 [TBL] [Abstract][Full Text] [Related]
12. A comparison of multiple imputation and fully augmented weighted estimators for Cox regression with missing covariates. Qi L; Wang YF; He Y Stat Med; 2010 Nov; 29(25):2592-604. PubMed ID: 20806403 [TBL] [Abstract][Full Text] [Related]
13. Imputation strategies when a continuous outcome is to be dichotomized for responder analysis: a simulation study. Floden L; Bell ML BMC Med Res Methodol; 2019 Jul; 19(1):161. PubMed ID: 31345166 [TBL] [Abstract][Full Text] [Related]
14. Multiple imputation methods for handling incomplete longitudinal and clustered data where the target analysis is a linear mixed effects model. Huque MH; Moreno-Betancur M; Quartagno M; Simpson JA; Carlin JB; Lee KJ Biom J; 2020 Mar; 62(2):444-466. PubMed ID: 31919921 [TBL] [Abstract][Full Text] [Related]
15. Multiple imputation with missing data indicators. Beesley LJ; Bondarenko I; Elliot MR; Kurian AW; Katz SJ; Taylor JM Stat Methods Med Res; 2021 Dec; 30(12):2685-2700. PubMed ID: 34643465 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of multiple imputation approaches for handling missing covariate information in a case-cohort study with a binary outcome. Middleton M; Nguyen C; Moreno-Betancur M; Carlin JB; Lee KJ BMC Med Res Methodol; 2022 Apr; 22(1):87. PubMed ID: 35369860 [TBL] [Abstract][Full Text] [Related]
17. Multiple imputation for handling missing outcome data when estimating the relative risk. Sullivan TR; Lee KJ; Ryan P; Salter AB BMC Med Res Methodol; 2017 Sep; 17(1):134. PubMed ID: 28877666 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of approaches for multiple imputation of three-level data. Wijesuriya R; Moreno-Betancur M; Carlin JB; Lee KJ BMC Med Res Methodol; 2020 Aug; 20(1):207. PubMed ID: 32787781 [TBL] [Abstract][Full Text] [Related]
19. Dealing with missing delirium assessments in prospective clinical studies of the critically ill: a simulation study and reanalysis of two delirium studies. Raman R; Chen W; Harhay MO; Thompson JL; Ely EW; Pandharipande PP; Patel MB BMC Med Res Methodol; 2021 May; 21(1):97. PubMed ID: 33952189 [TBL] [Abstract][Full Text] [Related]
20. Outcome-sensitive multiple imputation: a simulation study. Kontopantelis E; White IR; Sperrin M; Buchan I BMC Med Res Methodol; 2017 Jan; 17(1):2. PubMed ID: 28068910 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]