BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37339003)

  • 1. Description of a new cellulosic natural fiber extracted from Helianthus tuberosus L. as a composite reinforcement material.
    Dalmis R
    Physiol Plant; 2023; 175(4):e13960. PubMed ID: 37339003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of natural cellulosic fiber extracted from Grewia ferruginea plant stem.
    Birlie B; Mamay T
    Int J Biol Macromol; 2024 Jun; 271(Pt 2):132858. PubMed ID: 38845254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of raw and alkali treated new natural cellulosic fiber from Coccinia grandis.L.
    Senthamaraikannan P; Kathiresan M
    Carbohydr Polym; 2018 Apr; 186():332-343. PubMed ID: 29455994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extraction and characterization of natural cellulosic fiber from Mariscus ligularis plant as potential reinforcement in composites.
    Garriba S; Siddhi Jailani H
    Int J Biol Macromol; 2023 Dec; 253(Pt 8):127609. PubMed ID: 37871721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extraction and characterization of a new natural cellulosic fiber from the Habara Plant Stem (HF) as potential reinforcement for polymer composites.
    Vijayakkannan K; Rajendran I
    Int J Biol Macromol; 2024 Jun; 269(Pt 1):131818. PubMed ID: 38670191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of new natural cellulosic fiber from Lygeum spartum L.
    Belouadah Z; Ati A; Rokbi M
    Carbohydr Polym; 2015 Dec; 134():429-37. PubMed ID: 26428144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of new natural cellulosic fiber from Cissus quadrangularis root.
    Indran S; Raj RE; Sreenivasan VS
    Carbohydr Polym; 2014 Sep; 110():423-9. PubMed ID: 24906775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on a Novel natural cellulosic fiber from Kigelia africana fruit: Characterization and analysis.
    Siva R; Valarmathi TN; Palanikumar K; Samrot AV
    Carbohydr Polym; 2020 Sep; 244():116494. PubMed ID: 32536404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in thermal properties of hybrid cellulosic fiber reinforced polymer composites.
    Krishnasamy S; Thiagamani SMK; Muthu Kumar C; Nagarajan R; R M S; Siengchin S; Ismail SO; M P ID
    Int J Biol Macromol; 2019 Dec; 141():1-13. PubMed ID: 31472211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of raw and alkali treated new natural cellulosic fibers from Tridax procumbens.
    Vijay R; Lenin Singaravelu D; Vinod A; Sanjay MR; Siengchin S; Jawaid M; Khan A; Parameswaranpillai J
    Int J Biol Macromol; 2019 Mar; 125():99-108. PubMed ID: 30528990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revalorization of cellulosic fiber extracted from the waste stem of Brassica oleracea var. botrytis L. (cauliflower) by characterizing for potential composite applications.
    Eryilmaz O
    Int J Biol Macromol; 2024 May; 266(Pt 1):131086. PubMed ID: 38521302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A plant fiber reinforced polymer composite prepared by a twin-screw extruder.
    Sui G; Fuqua MA; Ulven CA; Zhong WH
    Bioresour Technol; 2009 Feb; 100(3):1246-51. PubMed ID: 18842402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of new natural cellulosic fiber from Cissus quadrangularis stem.
    Indran S; Raj RE
    Carbohydr Polym; 2015 Mar; 117():392-399. PubMed ID: 25498651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short Carbon Fiber Reinforced Polymers: Utilizing Lignin to Engineer Potentially Sustainable Resource-Based Biocomposites.
    Szabó L; Milotskyi R; Fujie T; Tsukegi T; Wada N; Ninomiya K; Takahashi K
    Front Chem; 2019; 7():757. PubMed ID: 31781540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraction of lignocellulosic fiber and cellulose microfibrils from agro waste-palmyra fruit peduncle: Water retting, chlorine-free chemical treatments, physio-chemical, morphological, and thermal characterization.
    Balasubramani V; Nagarajan KJ; Karthic M; Pandiyarajan R
    Int J Biol Macromol; 2024 Feb; 259(Pt 2):129273. PubMed ID: 38211922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Valorization of cellulosic fiber derived from waste biomass of constructed wetland as a potential reinforcement in polymeric composites: A technological approach to achieve circular economy.
    Sharma S; Asolekar SR; Thakur VK; Asokan P
    J Environ Manage; 2023 Aug; 340():117850. PubMed ID: 37105106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physico-chemical and extraction properties on alkali-treated Acacia pennata fiber.
    Sheeba KRJ; Alagarasan JK; Dharmaraja J; Kavitha SA; Shobana S; Arvindnarayan S; Vadivel M; Lee M; Retnam KP
    Environ Res; 2023 Sep; 233():116415. PubMed ID: 37343749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites.
    Fiore V; Scalici T; Valenza A
    Carbohydr Polym; 2014 Jun; 106():77-83. PubMed ID: 24721053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermogravimetric Analysis Properties of Cellulosic Natural Fiber Polymer Composites: A Review on Influence of Chemical Treatments.
    Nurazzi NM; Asyraf MRM; Rayung M; Norrrahim MNF; Shazleen SS; Rani MSA; Shafi AR; Aisyah HA; Radzi MHM; Sabaruddin FA; Ilyas RA; Zainudin ES; Abdan K
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of cellulose/Thespesia lampas short fibers bio-composite films.
    Ashok B; Reddy KO; Madhukar K; Cai J; Zhang L; Rajulu AV
    Carbohydr Polym; 2015; 127():110-5. PubMed ID: 25965463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.