These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 37339103)

  • 1. Transition Metal Catalysis in Living Cells: Progress, Challenges, and Novel Supramolecular Solutions.
    James CC; de Bruin B; Reek JNH
    Angew Chem Int Ed Engl; 2023 Oct; 62(41):e202306645. PubMed ID: 37339103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New directions in supramolecular transition metal catalysis.
    Wilkinson MJ; van Leeuwen PW; Reek JN
    Org Biomol Chem; 2005 Jul; 3(13):2371-83. PubMed ID: 15976851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts.
    Tonga GY; Jeong Y; Duncan B; Mizuhara T; Mout R; Das R; Kim ST; Yeh YC; Yan B; Hou S; Rotello VM
    Nat Chem; 2015 Jul; 7(7):597-603. PubMed ID: 26100809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition metal catalysts for the bioorthogonal synthesis of bioactive agents.
    van de L'Isle MON; Ortega-Liebana MC; Unciti-Broceta A
    Curr Opin Chem Biol; 2021 Apr; 61():32-42. PubMed ID: 33147552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Weak coordination as a powerful means for developing broadly useful C-H functionalization reactions.
    Engle KM; Mei TS; Wasa M; Yu JQ
    Acc Chem Res; 2012 Jun; 45(6):788-802. PubMed ID: 22166158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alkynoates as Versatile and Powerful Chemical Tools for the Rapid Assembly of Diverse Heterocycles under Transition-Metal Catalysis: Recent Developments and Challenges.
    Khan I; Ibrar A; Zaib S
    Top Curr Chem (Cham); 2021 Jan; 379(1):3. PubMed ID: 33398642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-Alkylation by Hydrogen Autotransfer Reactions [corrected].
    Ma X; Su C; Xu Q
    Top Curr Chem (Cham); 2016 Jun; 374(3):27. PubMed ID: 27573267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supramolecular catalysis beyond enzyme mimics.
    Meeuwissen J; Reek JN
    Nat Chem; 2010 Aug; 2(8):615-21. PubMed ID: 20651721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition metal catalysis in the mitochondria of living cells.
    Tomás-Gamasa M; Martínez-Calvo M; Couceiro JR; Mascareñas JL
    Nat Commun; 2016 Sep; 7():12538. PubMed ID: 27600651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold(I) catalysis at extreme concentrations inside self-assembled nanospheres.
    Gramage-Doria R; Hessels J; Leenders SH; Tröppner O; Dürr M; Ivanović-Burmazović I; Reek JN
    Angew Chem Int Ed Engl; 2014 Dec; 53(49):13380-4. PubMed ID: 25219625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition Metal-Promoted Reactions in Aqueous Media and Biological Settings.
    Destito P; Vidal C; López F; Mascareñas JL
    Chemistry; 2021 Mar; 27(15):4789-4816. PubMed ID: 32991764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designed transition metal catalysts for intracellular organic synthesis.
    Bai Y; Chen J; Zimmerman SC
    Chem Soc Rev; 2018 Mar; 47(5):1811-1821. PubMed ID: 29367988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Assembled Tetrahedral Hosts as Supramolecular Catalysts.
    Hong CM; Bergman RG; Raymond KN; Toste FD
    Acc Chem Res; 2018 Oct; 51(10):2447-2455. PubMed ID: 30272943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Core and periphery functionalized dendrimers for transition metal catalysis; a covalent and a non-covalent approach.
    Reek JN; de Groot D; Oosterom GE; Kamer PC; van Leeuwen PW
    J Biotechnol; 2002 May; 90(3-4):159-81. PubMed ID: 12071224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radicals in transition metal catalyzed reactions? transition metal catalyzed radical reactions? a fruitful interplay anyway: part 1. Radical catalysis by group 4 to group 7 elements.
    Jahn U
    Top Curr Chem; 2012; 320():121-89. PubMed ID: 22025066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining transition metal catalysis and organocatalysis: a broad new concept for catalysis.
    Shao Z; Zhang H
    Chem Soc Rev; 2009 Sep; 38(9):2745-55. PubMed ID: 19690751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ activation of therapeutics through bioorthogonal catalysis.
    Wang W; Zhang X; Huang R; Hirschbiegel CM; Wang H; Ding Y; Rotello VM
    Adv Drug Deliv Rev; 2021 Sep; 176():113893. PubMed ID: 34333074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and Engineering of Metal Catalysts for Bio-orthogonal Catalysis in Living Systems.
    Liu Y; Bai Y
    ACS Appl Bio Mater; 2020 Aug; 3(8):4717-4746. PubMed ID: 35021720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Progress on Transition Metal Catalyst Separation and Recycling in ATRP.
    Ding M; Jiang X; Zhang L; Cheng Z; Zhu X
    Macromol Rapid Commun; 2015 Oct; 36(19):1702-21. PubMed ID: 26079178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.