These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 37339125)

  • 1. iPiDA-SWGCN: Identification of piRNA-disease associations based on Supplementarily Weighted Graph Convolutional Network.
    Hou J; Wei H; Liu B
    PLoS Comput Biol; 2023 Jun; 19(6):e1011242. PubMed ID: 37339125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iPiDA-GCN: Identification of piRNA-disease associations based on Graph Convolutional Network.
    Hou J; Wei H; Liu B
    PLoS Comput Biol; 2022 Oct; 18(10):e1010671. PubMed ID: 36301998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. iPiDA-sHN: Identification of Piwi-interacting RNA-disease associations by selecting high quality negative samples.
    Wei H; Ding Y; Liu B
    Comput Biol Chem; 2020 Oct; 88():107361. PubMed ID: 32916452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PUTransGCN: identification of piRNA-disease associations based on attention encoding graph convolutional network and positive unlabelled learning.
    Chen Q; Zhang L; Liu Y; Qin Z; Zhao T
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38581419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ETGPDA: identification of piRNA-disease associations based on embedding transformation graph convolutional network.
    Meng X; Shang J; Ge D; Yang Y; Zhang T; Liu JX
    BMC Genomics; 2023 May; 24(1):279. PubMed ID: 37226081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PDA-PRGCN: identification of Piwi-interacting RNA-disease associations through subgraph projection and residual scaling-based feature augmentation.
    Zhang P; Sun W; Wei D; Li G; Xu J; You Z; Zhao B; Li L
    BMC Bioinformatics; 2023 Jan; 24(1):18. PubMed ID: 36650439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. iPiDA-LTR: Identifying piwi-interacting RNA-disease associations based on Learning to Rank.
    Zhang W; Hou J; Liu B
    PLoS Comput Biol; 2022 Aug; 18(8):e1010404. PubMed ID: 35969645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. iPiDi-PUL: identifying Piwi-interacting RNA-disease associations based on positive unlabeled learning.
    Wei H; Xu Y; Liu B
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32393982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. piRNA-disease association prediction based on multi-channel graph variational autoencoder.
    Sun W; Guo C; Wan J; Ren H
    PeerJ Comput Sci; 2024; 10():e2216. PubMed ID: 39145234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inferring the Disease-Associated miRNAs Based on Network Representation Learning and Convolutional Neural Networks.
    Xuan P; Sun H; Wang X; Zhang T; Pan S
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31349729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SPRDA: a link prediction approach based on the structural perturbation to infer disease-associated Piwi-interacting RNAs.
    Zheng K; Zhang XL; Wang L; You ZH; Ji BY; Liang X; Li ZW
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36445194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MDA-GCNFTG: identifying miRNA-disease associations based on graph convolutional networks via graph sampling through the feature and topology graph.
    Chu Y; Wang X; Dai Q; Wang Y; Wang Q; Peng S; Wei X; Qiu J; Salahub DR; Xiong Y; Wei DQ
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34009265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graph Convolutional Autoencoder and Fully-Connected Autoencoder with Attention Mechanism Based Method for Predicting Drug-Disease Associations.
    Xuan P; Gao L; Sheng N; Zhang T; Nakaguchi T
    IEEE J Biomed Health Inform; 2021 May; 25(5):1793-1804. PubMed ID: 33216722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel candidate disease gene prioritization method using deep graph convolutional networks and semi-supervised learning.
    Azadifar S; Ahmadi A
    BMC Bioinformatics; 2022 Oct; 23(1):422. PubMed ID: 36241966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of piRNA disease associations using deep learning.
    Ali SD; Tayara H; Chong KT
    Comput Struct Biotechnol J; 2022; 20():1208-1217. PubMed ID: 35317234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HINGRL: predicting drug-disease associations with graph representation learning on heterogeneous information networks.
    Zhao BW; Hu L; You ZH; Wang L; Su XR
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34891172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel graph attention adversarial network for predicting disease-related associations.
    Zhang J; Jiang Z; Hu X; Song B
    Methods; 2020 Jul; 179():81-88. PubMed ID: 32446956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CNNDLP: A Method Based on Convolutional Autoencoder and Convolutional Neural Network with Adjacent Edge Attention for Predicting lncRNA-Disease Associations.
    Xuan P; Sheng N; Zhang T; Liu Y; Guo Y
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31480319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning global dependencies and multi-semantics within heterogeneous graph for predicting disease-related lncRNAs.
    Xuan P; Wang S; Cui H; Zhao Y; Zhang T; Wu P
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36088549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting miRNA-disease associations via learning multimodal networks and fusing mixed neighborhood information.
    Lou Z; Cheng Z; Li H; Teng Z; Liu Y; Tian Z
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35524503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.