These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 37339158)
1. Single-Ion-Conducting Hydrogel Electrolytes Based on Slide-Ring Pseudo-Polyrotaxane for Ultralong-Cycling Flexible Zinc-Ion Batteries. Xia H; Xu G; Cao X; Miao C; Zhang H; Chen P; Zhou Y; Zhang W; Sun Z Adv Mater; 2023 Sep; 35(36):e2301996. PubMed ID: 37339158 [TBL] [Abstract][Full Text] [Related]
2. Single-Ion Conducting Double-Network Hydrogel Electrolytes for Long Cycling Zinc-Ion Batteries. Chan CY; Wang Z; Li Y; Yu H; Fei B; Xin JH ACS Appl Mater Interfaces; 2021 Jul; 13(26):30594-30602. PubMed ID: 34165274 [TBL] [Abstract][Full Text] [Related]
3. Stable Hydrogel Electrolytes for Flexible and Submarine-Use Zn-Ion Batteries. Wang B; Li J; Hou C; Zhang Q; Li Y; Wang H ACS Appl Mater Interfaces; 2020 Oct; 12(41):46005-46014. PubMed ID: 32930567 [TBL] [Abstract][Full Text] [Related]
4. Polysaccharide hydrogel electrolytes with robust interfacial contact to electrodes for quasi-solid state flexible aqueous zinc ion batteries with efficient suppressing of dendrite growth. Deng Y; Wu Y; Wang L; Zhang K; Wang Y; Yan L J Colloid Interface Sci; 2023 Mar; 633():142-154. PubMed ID: 36436347 [TBL] [Abstract][Full Text] [Related]
5. An ionically cross-linked composite hydrogel electrolyte based on natural biomacromolecules for sustainable zinc-ion batteries. Ge H; Qin L; Zhang B; Jiang L; Tang Y; Lu B; Tian S; Zhou J Nanoscale Horiz; 2024 Aug; 9(9):1514-1521. PubMed ID: 38952214 [TBL] [Abstract][Full Text] [Related]
6. Low-Cost Zinc-Alginate-Based Hydrogel-Polymer Electrolytes for Dendrite-Free Zinc-Ion Batteries with High Performances and Prolonged Lifetimes. Zheng Z; Cao H; Shi W; She C; Zhou X; Liu L; Zhu Y Polymers (Basel); 2022 Dec; 15(1):. PubMed ID: 36616562 [TBL] [Abstract][Full Text] [Related]
7. A Hydrogel Electrolyte with High Adaptability over a Wide Temperature Range and Mechanical Stress for Long-Life Flexible Zinc-Ion Batteries. Zhang J; Lin C; Zeng L; Lin H; He L; Xiao F; Luo L; Xiong P; Yang X; Chen Q; Qian Q Small; 2024 Jul; 20(30):e2312116. PubMed ID: 38446107 [TBL] [Abstract][Full Text] [Related]
8. A Bio-Inspired Multifunctional Hydrogel Network with Toughly Interfacial Chemistry for Dendrite-Free Flexible Zinc Ion Battery. Yang S; Wu Q; Li Y; Luo F; Zhang J; Chen K; You Y; Huang J; Xie H; Chen Y Angew Chem Int Ed Engl; 2024 Oct; 63(44):e202409160. PubMed ID: 39113640 [TBL] [Abstract][Full Text] [Related]
9. Water and Salt Concentration-Dependent Electrochemical Performance of Hydrogel Electrolytes in Zinc-Ion Batteries. Zhu D; Li J; Zheng Z; Ye S; Pan Y; Wu J; She F; Lai L; Zhou Z; Chen J; Li H; Wei L; Chen Y ACS Appl Mater Interfaces; 2024 Apr; 16(13):16175-16185. PubMed ID: 38509690 [TBL] [Abstract][Full Text] [Related]
10. Freestanding Potassium Vanadate/Carbon Nanotube Films for Ultralong-Life Aqueous Zinc-Ion Batteries. Wan F; Huang S; Cao H; Niu Z ACS Nano; 2020 Jun; 14(6):6752-6760. PubMed ID: 32432458 [TBL] [Abstract][Full Text] [Related]
11. Double Network Gel Electrolyte with High Ionic Conductivity and Mechanical Strength for Zinc-Ion Batteries. Zeng W; Zhang S; Lan J; Lv Y; Zhu G; Huang H; Lv W; Zhu Y ACS Nano; 2024 Sep; ():. PubMed ID: 39269613 [TBL] [Abstract][Full Text] [Related]
12. Insights on Flexible Zinc-Ion Batteries from Lab Research to Commercialization. Dong H; Li J; Guo J; Lai F; Zhao F; Jiao Y; Brett DJL; Liu T; He G; Parkin IP Adv Mater; 2021 May; 33(20):e2007548. PubMed ID: 33797810 [TBL] [Abstract][Full Text] [Related]
13. Investigation of a Biomass Hydrogel Electrolyte Naturally Stabilizing Cathodes for Zinc-Ion Batteries. Dong H; Li J; Zhao S; Jiao Y; Chen J; Tan Y; Brett DJL; He G; Parkin IP ACS Appl Mater Interfaces; 2021 Jan; 13(1):745-754. PubMed ID: 33370108 [TBL] [Abstract][Full Text] [Related]
14. Lean-water hydrogel electrolyte for zinc ion batteries. Wang Y; Li Q; Hong H; Yang S; Zhang R; Wang X; Jin X; Xiong B; Bai S; Zhi C Nat Commun; 2023 Jul; 14(1):3890. PubMed ID: 37393327 [TBL] [Abstract][Full Text] [Related]
15. Anti-Fatigue Hydrogel Electrolyte for All-Flexible Zn-Ion Batteries. Liu Q; Yu Z; Zhuang Q; Kim JK; Kang F; Zhang B Adv Mater; 2023 Sep; 35(36):e2300498. PubMed ID: 37236630 [TBL] [Abstract][Full Text] [Related]
16. Spatially Confined Engineering Toward Deep Eutectic Electrolyte in Metal-Organic Framework Enabling Solid-State Zinc-Ion Batteries. Miao CL; Wang XX; Guan DH; Li JX; Li JY; Xu JJ Angew Chem Int Ed Engl; 2024 Oct; 63(40):e202410208. PubMed ID: 38988225 [TBL] [Abstract][Full Text] [Related]
17. Realizing an All-Round Hydrogel Electrolyte toward Environmentally Adaptive Dendrite-Free Aqueous Zn-MnO Chen M; Chen J; Zhou W; Han X; Yao Y; Wong CP Adv Mater; 2021 Mar; 33(9):e2007559. PubMed ID: 33511697 [TBL] [Abstract][Full Text] [Related]
18. Salting-Out Effect Realizing High-Strength and Dendrite-Inhibiting Cellulose Hydrogel Electrolyte for Durable Aqueous Zinc-Ion Batteries. Quan Y; Ma H; Chen M; Zhou W; Tian Q; Han X; Chen J ACS Appl Mater Interfaces; 2023 Sep; 15(38):44974-44983. PubMed ID: 37712868 [TBL] [Abstract][Full Text] [Related]
19. "Salting out" in Hofmeister Effect Enhancing Mechanical and Electrochemical Performance of Amide-based Hydrogel Electrolytes for Flexible Zinc-Ion Battery. Cao G; Zhao L; Ji X; Peng Y; Yu M; Wang X; Li X; Ran F Small; 2023 Jul; 19(30):e2207610. PubMed ID: 37026666 [TBL] [Abstract][Full Text] [Related]
20. Electrolyte Dynamics Engineering for Flexible Fiber-Shaped Aqueous Zinc-Ion Battery with Ultralong Stability. Lu Y; Zhang H; Liu H; Nie Z; Xu F; Zhao Y; Zhu J; Huang W Nano Lett; 2021 Nov; 21(22):9651-9660. PubMed ID: 34767374 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]