BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 37339214)

  • 1. Single-cell transcriptomic profiling of the mouse cochlea: An atlas for targeted therapies.
    Jean P; Wong Jun Tai F; Singh-Estivalet A; Lelli A; Scandola C; Megharba S; Schmutz S; Roux S; Mechaussier S; Sudres M; Mouly E; Heritier AV; Bonnet C; Mallet A; Novault S; Libri V; Petit C; Michalski N
    Proc Natl Acad Sci U S A; 2023 Jun; 120(26):e2221744120. PubMed ID: 37339214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of an electrode for the artificial cochlear sensory epithelium.
    Tona Y; Inaoka T; Ito J; Kawano S; Nakagawa T
    Hear Res; 2015 Dec; 330(Pt A):106-12. PubMed ID: 26299844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental gene expression profiling along the tonotopic axis of the mouse cochlea.
    Son EJ; Wu L; Yoon H; Kim S; Choi JY; Bok J
    PLoS One; 2012; 7(7):e40735. PubMed ID: 22808246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent developments in cochlear physiology.
    Lippe WR
    Ear Hear; 1986 Aug; 7(4):233-9. PubMed ID: 3743914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cochlear development: hair cells don their wigs and get wired.
    Whitlon DS
    Curr Opin Otolaryngol Head Neck Surg; 2004 Oct; 12(5):449-54. PubMed ID: 15377960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation between word recognition score and intracochlear new bone and fibrous tissue after cochlear implantation in the human.
    Kamakura T; Nadol JB
    Hear Res; 2016 Sep; 339():132-41. PubMed ID: 27371868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the effect of post-implant cochlear fibrosis on residual hearing.
    Choi CH; Oghalai JS
    Hear Res; 2005 Jul; 205(1-2):193-200. PubMed ID: 15953528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of the gerbil inner ear observed in the hemicochlea.
    Richter CP; Edge R; He DZ; Dallos P
    J Assoc Res Otolaryngol; 2000 Nov; 1(3):195-210. PubMed ID: 11545226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tmprss3, a transmembrane serine protease deficient in human DFNB8/10 deafness, is critical for cochlear hair cell survival at the onset of hearing.
    Fasquelle L; Scott HS; Lenoir M; Wang J; Rebillard G; Gaboyard S; Venteo S; François F; Mausset-Bonnefont AL; Antonarakis SE; Neidhart E; Chabbert C; Puel JL; Guipponi M; Delprat B
    J Biol Chem; 2011 May; 286(19):17383-97. PubMed ID: 21454591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical impedance measurements of cochlear structures using the four-electrode reflection-coefficient technique.
    Kumar G; Chokshi M; Richter CP
    Hear Res; 2010 Jan; 259(1-2):86-94. PubMed ID: 19857561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using acoustic distortion products to measure the cochlear amplifier gain on the basilar membrane.
    Allen JB; Fahey PF
    J Acoust Soc Am; 1992 Jul; 92(1):178-88. PubMed ID: 1512322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA microarray analysis in prenatal mouse cochlea reveals novel IGF-I target genes: implication of MEF2 and FOXM1 transcription factors.
    Sanchez-Calderon H; Rodriguez-de la Rosa L; Milo M; Pichel JG; Holley M; Varela-Nieto I
    PLoS One; 2010 Jan; 5(1):e8699. PubMed ID: 20111592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibration of the organ of Corti within the cochlear apex in mice.
    Gao SS; Wang R; Raphael PD; Moayedi Y; Groves AK; Zuo J; Applegate BE; Oghalai JS
    J Neurophysiol; 2014 Sep; 112(5):1192-204. PubMed ID: 24920025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hair cell maturation is differentially regulated along the tonotopic axis of the mammalian cochlea.
    Jeng JY; Ceriani F; Hendry A; Johnson SL; Yen P; Simmons DD; Kros CJ; Marcotti W
    J Physiol; 2020 Jan; 598(1):151-170. PubMed ID: 31661723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-cell transcriptomic atlas of mouse cochlear aging.
    Sun G; Zheng Y; Fu X; Zhang W; Ren J; Ma S; Sun S; He X; Wang Q; Ji Z; Cheng F; Yan K; Liu Z; Belmonte JCI; Qu J; Wang S; Chai R; Liu GH
    Protein Cell; 2023 Apr; 14(3):180-201. PubMed ID: 36933008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deafness gene expression patterns in the mouse cochlea found by microarray analysis.
    Yoshimura H; Takumi Y; Nishio SY; Suzuki N; Iwasa Y; Usami S
    PLoS One; 2014; 9(3):e92547. PubMed ID: 24676347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptomic Analysis of Mouse Cochlear Supporting Cell Maturation Reveals Large-Scale Changes in Notch Responsiveness Prior to the Onset of Hearing.
    Maass JC; Gu R; Cai T; Wan YW; Cantellano SC; Asprer JS; Zhang H; Jen HI; Edlund RK; Liu Z; Groves AK
    PLoS One; 2016; 11(12):e0167286. PubMed ID: 27918591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Relationship of distortion product in cochlea with cochlear activity revealed by laser interferometry].
    Long X; Zhang Y; Lu J; Long C
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2015 Sep; 29(18):1644-7. PubMed ID: 26790268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conserved role of Sonic Hedgehog in tonotopic organization of the avian basilar papilla and mammalian cochlea.
    Son EJ; Ma JH; Ankamreddy H; Shin JO; Choi JY; Wu DK; Bok J
    Proc Natl Acad Sci U S A; 2015 Mar; 112(12):3746-51. PubMed ID: 25775517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sound pressures in the basal turn of the cat cochlea.
    Nedzelnitsky V
    J Acoust Soc Am; 1980 Dec; 68(6):1676-89. PubMed ID: 7462467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.