These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 37339438)
21. Controllable Transition Metal-Directed Assembly of [Mo Li B; Duan X; Cheng D; Chen X; Gao Z; Ren W; Shao KZ; Zang HY J Am Chem Soc; 2023 Feb; 145(4):2243-2251. PubMed ID: 36580675 [TBL] [Abstract][Full Text] [Related]
22. Converting Water Adsorption and Capillary Condensation in Usable Forces with Simple Porous Inorganic Thin Films. Boudot M; Elettro H; Grosso D ACS Nano; 2016 Nov; 10(11):10031-10040. PubMed ID: 27792305 [TBL] [Abstract][Full Text] [Related]
23. Smart Bioinspired Actuators: Crawling, Linear, and Bending Motions through a Multilayer Design. Barpuzary D; Ham H; Park D; Kim K; Park MJ ACS Appl Mater Interfaces; 2021 Oct; 13(42):50381-50391. PubMed ID: 34657431 [TBL] [Abstract][Full Text] [Related]
24. Moisture-Enabled Electricity from Hygroscopic Materials: A New Type of Clean Energy. Xu T; Ding X; Cheng H; Han G; Qu L Adv Mater; 2024 Mar; 36(12):e2209661. PubMed ID: 36657097 [TBL] [Abstract][Full Text] [Related]
25. Development and challenges of smart actuators based on water-responsive materials. Zhang Y; Zhang C; Wang R; Tan W; Gu Y; Yu X; Zhu L; Liu L Soft Matter; 2022 Aug; 18(31):5725-5741. PubMed ID: 35904079 [TBL] [Abstract][Full Text] [Related]
26. Apparatus for investigating the reactions of soft-bodied invertebrates to controlled humidity gradients. Russell J; Pierce-Shimomura JT J Neurosci Methods; 2014 Nov; 237():54-9. PubMed ID: 25176025 [TBL] [Abstract][Full Text] [Related]
27. Self-Powered, Rapid-Response, and Highly Flexible Humidity Sensors Based on Moisture-Dependent Voltage Generation. Shen D; Xiao M; Xiao Y; Zou G; Hu L; Zhao B; Liu L; Duley WW; Zhou YN ACS Appl Mater Interfaces; 2019 Apr; 11(15):14249-14255. PubMed ID: 30907574 [TBL] [Abstract][Full Text] [Related]
28. Engineering Covalent Organic Frameworks with Polyethylene Glycol as Self-Sustained Humidity-Responsive Actuators. Mao T; Liu Z; Guo X; Wang Z; Liu J; Wang T; Geng S; Chen Y; Cheng P; Zhang Z Angew Chem Int Ed Engl; 2023 Jan; 62(4):e202216318. PubMed ID: 36409291 [TBL] [Abstract][Full Text] [Related]
29. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. Wang ZL ACS Nano; 2013 Nov; 7(11):9533-57. PubMed ID: 24079963 [TBL] [Abstract][Full Text] [Related]
30. Controlled flight of a microrobot powered by soft artificial muscles. Chen Y; Zhao H; Mao J; Chirarattananon P; Helbling EF; Hyun NP; Clarke DR; Wood RJ Nature; 2019 Nov; 575(7782):324-329. PubMed ID: 31686057 [TBL] [Abstract][Full Text] [Related]
31. Hygrobot: A self-locomotive ratcheted actuator powered by environmental humidity. Shin B; Ha J; Lee M; Park K; Park GH; Choi TH; Cho KJ; Kim HY Sci Robot; 2018 Jan; 3(14):. PubMed ID: 33141700 [TBL] [Abstract][Full Text] [Related]
32. Fabrication of Moisture-Responsive Crystalline Smart Materials for Water Harvesting and Electricity Transduction. Yang M; Wang SQ; Liu Z; Chen Y; Zaworotko MJ; Cheng P; Ma JG; Zhang Z J Am Chem Soc; 2021 May; 143(20):7732-7739. PubMed ID: 33985332 [TBL] [Abstract][Full Text] [Related]
33. Mechanistic insights of evaporation-induced actuation in supramolecular crystals. Piotrowska R; Hesketh T; Wang H; Martin ARG; Bowering D; Zhang C; Hu CT; McPhee SA; Wang T; Park Y; Singla P; McGlone T; Florence A; Tuttle T; Ulijn RV; Chen X Nat Mater; 2021 Mar; 20(3):403-409. PubMed ID: 32929251 [TBL] [Abstract][Full Text] [Related]
34. Underwater Crawling Robot With Hydraulic Soft Actuators. Tan Q; Chen Y; Liu J; Zou K; Yi J; Liu S; Wang Z Front Robot AI; 2021; 8():688697. PubMed ID: 34513936 [TBL] [Abstract][Full Text] [Related]
35. Electrospun Polytetrafluoroethylene Nanofibrous Membrane for High-Performance Self-Powered Sensors. Lin S; Cheng Y; Mo X; Chen S; Xu Z; Zhou B; Zhou H; Hu B; Zhou J Nanoscale Res Lett; 2019 Jul; 14(1):251. PubMed ID: 31346837 [TBL] [Abstract][Full Text] [Related]
36. Flexible, humidity- and contamination-resistant superhydrophobic MXene-based electrospun triboelectric nanogenerators for distributed energy harvesting applications. Sardana S; Sharma V; Beepat KG; Sharma DP; Chawla AK; Mahajan A Nanoscale; 2023 Dec; 15(47):19369-19380. PubMed ID: 38014549 [TBL] [Abstract][Full Text] [Related]
37. 3D Temporary-Magnetized Soft Robotic Structures for Enhanced Energy Harvesting. Miao L; Song Y; Ren Z; Xu C; Wan J; Wang H; Guo H; Xiang Z; Han M; Zhang H Adv Mater; 2021 Oct; 33(40):e2102691. PubMed ID: 34396604 [TBL] [Abstract][Full Text] [Related]
38. Modular Soft Robot with Origami Skin for Versatile Applications. Jin T; Wang T; Xiong Q; Tian Y; Li L; Zhang Q; Yeow CH Soft Robot; 2023 Aug; 10(4):785-796. PubMed ID: 36951665 [TBL] [Abstract][Full Text] [Related]
39. Super Moisture-Absorbent Gels for All-Weather Atmospheric Water Harvesting. Zhao F; Zhou X; Liu Y; Shi Y; Dai Y; Yu G Adv Mater; 2019 Mar; 31(10):e1806446. PubMed ID: 30633394 [TBL] [Abstract][Full Text] [Related]
40. Robust and Highly Sensitive Cellulose Nanofiber-Based Humidity Actuators. Wei J; Jia S; Guan J; Ma C; Shao Z ACS Appl Mater Interfaces; 2021 Nov; 13(45):54417-54427. PubMed ID: 34734698 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]