These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 37339499)

  • 1. Driver behaviors assisted by different human machine interfaces to avoid rear-end collisions during level 2 automated driving.
    Yang B; Saito T; Wang Z; Kitazaki S; Nakano K
    Traffic Inj Prev; 2023; 24(6):475-481. PubMed ID: 37339499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A rear-end collision risk assessment model based on drivers' collision avoidance process under influences of cell phone use and gender-A driving simulator based study.
    Li X; Yan X; Wu J; Radwan E; Zhang Y
    Accid Anal Prev; 2016 Dec; 97():1-18. PubMed ID: 27565040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of car driver responses to avoid car-to-cyclist perpendicular collisions based on drive recorder data and driving simulator experiments.
    Zhao Y; Miyahara T; Mizuno K; Ito D; Han Y
    Accid Anal Prev; 2021 Feb; 150():105862. PubMed ID: 33276185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved automated braking system for rear-end collisions: A study based on a driving simulator experiment.
    Hang J; Yan X; Li X; Duan K; Yang J; Xue Q
    J Safety Res; 2022 Feb; 80():416-427. PubMed ID: 35249623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of collision warning characteristics on driving behaviors and safety in connected vehicle environments.
    Zhao W; Gong S; Zhao D; Liu F; Sze NN; Huang H
    Accid Anal Prev; 2023 Jun; 186():107053. PubMed ID: 37030178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of information from dash-based human-machine interfaces on drivers' gaze patterns and lane-change manoeuvres after conditionally automated driving.
    Gonçalves RC; Louw TL; Madigan R; Quaresma M; Romano R; Merat N
    Accid Anal Prev; 2022 Sep; 174():106726. PubMed ID: 35716544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autonomous emergency braking systems adapted to snowy road conditions improve drivers' perceived safety and trust.
    Koglbauer I; Holzinger J; Eichberger A; Lex C
    Traffic Inj Prev; 2018 Apr; 19(3):332-337. PubMed ID: 29227692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impacts of information quantity and display formats on driving behaviors in a connected vehicle environment.
    Zhao W; Gong S; Zhao D; Liu F; Sze NN; Quddus M; Huang H; Zhao X
    Accid Anal Prev; 2024 Aug; 203():107621. PubMed ID: 38729056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steering or braking avoidance response in SHRP2 rear-end crashes and near-crashes: A decision tree approach.
    Sarkar A; Hickman JS; McDonald AD; Huang W; Vogelpohl T; Markkula G
    Accid Anal Prev; 2021 May; 154():106055. PubMed ID: 33691227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collision warning timing, driver distraction, and driver response to imminent rear-end collisions in a high-fidelity driving simulator.
    Lee JD; McGehee DV; Brown TL; Reyes ML
    Hum Factors; 2002; 44(2):314-34. PubMed ID: 12452276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of motor control requirements on drivers' eye-gaze pattern during automated driving.
    Goncalves RC; Louw TL; Quaresma M; Madigan R; Merat N
    Accid Anal Prev; 2020 Dec; 148():105788. PubMed ID: 33039820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increase in rear-end collision risk by acute stress-induced fatigue in on-road truck driving.
    Minusa S; Mizuno K; Ojiro D; Tanaka T; Kuriyama H; Yamano E; Kuratsune H; Watanabe Y
    PLoS One; 2021; 16(10):e0258892. PubMed ID: 34673839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the impact of HMI on drivers' merging performance in intelligent connected vehicle environment.
    Wang Y; Lyu N; Wu C; Du Z; Deng M; Wu H
    Accid Anal Prev; 2024 Apr; 198():107448. PubMed ID: 38340472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling braking behaviour of distracted young drivers in car-following interactions: A grouped random parameters duration model with heterogeneity-in-means.
    Ali Y; Haque MM
    Accid Anal Prev; 2023 Jun; 185():107015. PubMed ID: 36889237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing dynamic and static illustration of an HMI for cooperative driving.
    Kraft AK; Maag C; Baumann M
    Accid Anal Prev; 2020 Sep; 144():105682. PubMed ID: 32659493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Where drivers are looking at during takeover: Implications for safe takeovers during conditionally automated driving.
    Huang C; Yang B; Nakano K
    Traffic Inj Prev; 2023; 24(7):599-608. PubMed ID: 37347169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of driver active interventions during automated driving by displaying trajectory pointers-A driving simulator study.
    Ono S; Sasaki H; Kumon H; Fuwamoto Y; Kondo S; Narumi T; Tanikawa T; Hirose M
    Traffic Inj Prev; 2019; 20(sup1):S152-S156. PubMed ID: 31381449
    [No Abstract]   [Full Text] [Related]  

  • 18. Examination of drivers' cell phone use behavior at intersections by using naturalistic driving data.
    Xiong H; Bao S; Sayer J; Kato K
    J Safety Res; 2015 Sep; 54():89-93. PubMed ID: 26403907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of effects of driver's evasive action time on rear-end collision risk using a driving simulator.
    Shah D; Lee C
    J Safety Res; 2021 Sep; 78():242-250. PubMed ID: 34399920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective cues for accelerating young drivers' time to transfer control following a period of conditional automation.
    Wright TJ; Agrawal R; Samuel S; Wang Y; Zilberstein S; Fisher DL
    Accid Anal Prev; 2018 Jul; 116():14-20. PubMed ID: 29031513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.