These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 37339574)
1. MHAM-NPI: Predicting ncRNA-protein interactions based on multi-head attention mechanism. Zhou Z; Du Z; Wei J; Zhuo L; Pan S; Fu X; Lian X Comput Biol Med; 2023 Sep; 163():107143. PubMed ID: 37339574 [TBL] [Abstract][Full Text] [Related]
2. EDLMFC: an ensemble deep learning framework with multi-scale features combination for ncRNA-protein interaction prediction. Wang J; Zhao Y; Gong W; Liu Y; Wang M; Huang X; Tan J BMC Bioinformatics; 2021 Mar; 22(1):133. PubMed ID: 33740884 [TBL] [Abstract][Full Text] [Related]
3. NPI-DCGNN: An Accurate Tool for Identifying ncRNA-Protein Interactions Using a Dual-Channel Graph Neural Network. Zhang X; Zhao L; Chai Z; Wu H; Yang W; Li C; Jiang Y; Liu Q J Comput Biol; 2024 Aug; 31(8):742-756. PubMed ID: 38923911 [TBL] [Abstract][Full Text] [Related]
4. NPI-GNN: Predicting ncRNA-protein interactions with deep graph neural networks. Shen ZA; Luo T; Zhou YK; Yu H; Du PF Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822882 [TBL] [Abstract][Full Text] [Related]
5. GATLGEMF: A graph attention model with line graph embedding multi-complex features for ncRNA-protein interactions prediction. Yan J; Qu W; Li X; Wang R; Tan J Comput Biol Chem; 2024 Feb; 108():108000. PubMed ID: 38070456 [TBL] [Abstract][Full Text] [Related]
6. HeadTailTransfer: An efficient sampling method to improve the performance of graph neural network method in predicting sparse ncRNA-protein interactions. Wei J; Zhuo L; Pan S; Lian X; Yao X; Fu X Comput Biol Med; 2023 May; 157():106783. PubMed ID: 36958237 [TBL] [Abstract][Full Text] [Related]
7. Predicting ncRNA-protein interactions based on dual graph convolutional network and pairwise learning. Zhuo L; Song B; Liu Y; Li Z; Fu X Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36063562 [TBL] [Abstract][Full Text] [Related]
8. RPITER: A Hierarchical Deep Learning Framework for ncRNA⁻Protein Interaction Prediction. Peng C; Han S; Zhang H; Li Y Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30832218 [TBL] [Abstract][Full Text] [Related]
9. IPMiner: hidden ncRNA-protein interaction sequential pattern mining with stacked autoencoder for accurate computational prediction. Pan X; Fan YX; Yan J; Shen HB BMC Genomics; 2016 Aug; 17():582. PubMed ID: 27506469 [TBL] [Abstract][Full Text] [Related]
10. A model for predicting ncRNA-protein interactions based on graph neural networks and community detection. Zhuo L; Chen Y; Song B; Liu Y; Su Y Methods; 2022 Nov; 207():74-80. PubMed ID: 36108992 [TBL] [Abstract][Full Text] [Related]
11. RPI-SE: a stacking ensemble learning framework for ncRNA-protein interactions prediction using sequence information. Yi HC; You ZH; Wang MN; Guo ZH; Wang YB; Zhou JR BMC Bioinformatics; 2020 Feb; 21(1):60. PubMed ID: 32070279 [TBL] [Abstract][Full Text] [Related]
12. Accurate Prediction of ncRNA-Protein Interactions From the Integration of Sequence and Evolutionary Information. Zhan ZH; You ZH; Li LP; Zhou Y; Yi HC Front Genet; 2018; 9():458. PubMed ID: 30349558 [TBL] [Abstract][Full Text] [Related]
13. MFPINC: prediction of plant ncRNAs based on multi-source feature fusion. Nie Z; Gao M; Jin X; Rao Y; Zhang X BMC Genomics; 2024 May; 25(1):531. PubMed ID: 38816689 [TBL] [Abstract][Full Text] [Related]
14. RPI-EDLCN: An Ensemble Deep Learning Framework Based on Capsule Network for ncRNA-Protein Interaction Prediction. Li X; Qu W; Yan J; Tan J J Chem Inf Model; 2024 Apr; 64(7):2221-2235. PubMed ID: 37158609 [TBL] [Abstract][Full Text] [Related]
15. NPI-RGCNAE: Fast Predicting ncRNA-Protein Interactions Using the Relational Graph Convolutional Network Auto-Encoder. Yu H; Shen ZA; Du PF IEEE J Biomed Health Inform; 2022 Apr; 26(4):1861-1871. PubMed ID: 34699377 [TBL] [Abstract][Full Text] [Related]
16. BGFE: A Deep Learning Model for ncRNA-Protein Interaction Predictions Based on Improved Sequence Information. Zhan ZH; Jia LN; Zhou Y; Li LP; Yi HC Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30813451 [TBL] [Abstract][Full Text] [Related]
17. A Deep Learning Framework for Robust and Accurate Prediction of ncRNA-Protein Interactions Using Evolutionary Information. Yi HC; You ZH; Huang DS; Li X; Jiang TH; Li LP Mol Ther Nucleic Acids; 2018 Jun; 11():337-344. PubMed ID: 29858068 [TBL] [Abstract][Full Text] [Related]
18. LION: an integrated R package for effective prediction of ncRNA-protein interaction. Han S; Yang X; Sun H; Yang H; Zhang Q; Peng C; Fang W; Li Y Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36155620 [TBL] [Abstract][Full Text] [Related]
19. Identify ncRNA Subcellular Localization via Graph Regularized k-Local Hyperplane Distance Nearest Neighbor Model on Multi-Kernel Learning. Zhou H; Wang H; Tang J; Ding Y; Guo F IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3517-3529. PubMed ID: 34432632 [TBL] [Abstract][Full Text] [Related]