These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 37339909)

  • 41. Characterization of the cro-ori region of the Streptococcus thermophilus virulent bacteriophage DT1.
    Lamothe G; Lévesque C; Bissonnette F; Cochu A; Vadeboncoeur C; Frenette M; Duplessis M; Tremblay D; Moineau S
    Appl Environ Microbiol; 2005 Mar; 71(3):1237-46. PubMed ID: 15746324
    [TBL] [Abstract][Full Text] [Related]  

  • 42. CRISPR analysis of bacteriophage-insensitive mutants (BIMs) of industrial Streptococcus thermophilus--implications for starter design.
    Mills S; Griffin C; Coffey A; Meijer WC; Hafkamp B; Ross RP
    J Appl Microbiol; 2010 Mar; 108(3):945-955. PubMed ID: 19709335
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An anti-CRISPR from a virulent streptococcal phage inhibits Streptococcus pyogenes Cas9.
    Hynes AP; Rousseau GM; Lemay ML; Horvath P; Romero DA; Fremaux C; Moineau S
    Nat Microbiol; 2017 Oct; 2(10):1374-1380. PubMed ID: 28785032
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bacteriophages in food fermentations: new frontiers in a continuous arms race.
    Samson JE; Moineau S
    Annu Rev Food Sci Technol; 2013; 4():347-68. PubMed ID: 23244395
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization and comparison of CRISPR Loci in Streptococcus thermophilus.
    Hu T; Cui Y; Qu X
    Arch Microbiol; 2020 May; 202(4):695-710. PubMed ID: 31781808
    [TBL] [Abstract][Full Text] [Related]  

  • 46. CRISPR-Cas: an efficient tool for genome engineering of virulent bacteriophages.
    Martel B; Moineau S
    Nucleic Acids Res; 2014 Aug; 42(14):9504-13. PubMed ID: 25063295
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterization of a novel lytic bacteriophage from an industrial Escherichia coli fermentation process and elimination of virulence using a heterologous CRISPR-Cas9 system.
    Halter MC; Zahn JA
    J Ind Microbiol Biotechnol; 2018 Mar; 45(3):153-163. PubMed ID: 29411201
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Variability in the durability of CRISPR-Cas immunity.
    Chabas H; Nicot A; Meaden S; Westra ER; Tremblay DM; Pradier L; Lion S; Moineau S; Gandon S
    Philos Trans R Soc Lond B Biol Sci; 2019 May; 374(1772):20180097. PubMed ID: 30905283
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inhibition of bacteriophage replication in Streptococcus thermophilus by subunit poisoning of primase.
    Sturino JM; Klaenhammer TR
    Microbiology (Reading); 2007 Oct; 153(Pt 10):3295-3302. PubMed ID: 17906129
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Gene Co-occurrence Networks Reflect Bacteriophage Ecology and Evolution.
    Shapiro JW; Putonti C
    mBio; 2018 Mar; 9(2):. PubMed ID: 29559574
    [TBL] [Abstract][Full Text] [Related]  

  • 51. CRISPR provides acquired resistance against viruses in prokaryotes.
    Barrangou R; Fremaux C; Deveau H; Richards M; Boyaval P; Moineau S; Romero DA; Horvath P
    Science; 2007 Mar; 315(5819):1709-12. PubMed ID: 17379808
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Detection and characterization of Streptococcus thermophilus bacteriophages by use of the antireceptor gene sequence.
    Binetti AG; Del Río B; Martín MC; Alvarez MA
    Appl Environ Microbiol; 2005 Oct; 71(10):6096-103. PubMed ID: 16204526
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Broad-range bacteriophage resistance in Streptococcus thermophilus by insertional mutagenesis.
    Lucchini S; Sidoti J; Brüssow H
    Virology; 2000 Sep; 275(2):267-77. PubMed ID: 10998327
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of phage receptors in Streptococcus thermophilus using purified cell walls obtained by a simple protocol.
    Quiberoni A; Stiefel JI; Reinheimer JA
    J Appl Microbiol; 2000 Dec; 89(6):1059-65. PubMed ID: 11123479
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genome analysis of two virulent Streptococcus thermophilus phages isolated in Argentina.
    Guglielmotti DM; Deveau H; Binetti AG; Reinheimer JA; Moineau S; Quiberoni A
    Int J Food Microbiol; 2009 Nov; 136(1):101-9. PubMed ID: 19819037
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phage mutations in response to CRISPR diversification in a bacterial population.
    Sun CL; Barrangou R; Thomas BC; Horvath P; Fremaux C; Banfield JF
    Environ Microbiol; 2013 Feb; 15(2):463-70. PubMed ID: 23057534
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Toward Understanding Phage:Host Interactions in the Rumen; Complete Genome Sequences of Lytic Phages Infecting Rumen Bacteria.
    Gilbert RA; Kelly WJ; Altermann E; Leahy SC; Minchin C; Ouwerkerk D; Klieve AV
    Front Microbiol; 2017; 8():2340. PubMed ID: 29259581
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Widespread anti-CRISPR proteins in virulent bacteriophages inhibit a range of Cas9 proteins.
    Hynes AP; Rousseau GM; Agudelo D; Goulet A; Amigues B; Loehr J; Romero DA; Fremaux C; Horvath P; Doyon Y; Cambillau C; Moineau S
    Nat Commun; 2018 Jul; 9(1):2919. PubMed ID: 30046034
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Raman-spectroscopy-based approach for detection and discrimination of Streptococcus thermophilus and Lactobacillus bulgaricus phages at low titer in raw milk.
    Tayyarcan EK; Acar Soykut E; Boyaci IH
    Folia Microbiol (Praha); 2018 Sep; 63(5):627-636. PubMed ID: 29644510
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Survival Strategies of
    Beerens D; Franch-Arroyo S; Sullivan TJ; Goosmann C; Brinkmann V; Charpentier E
    Viruses; 2021 Apr; 13(4):. PubMed ID: 33918348
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.