BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 37340196)

  • 1. Quantitative Validation of the Correlation Between Optimized Pyramidal Tract Delineation After Brain Shift Compensation and Direct Electrical Subcortical Stimulation During Brain Tumor Surgery.
    Li Y; Hou Y; Li X; Li Q; Lu J; Tang J
    J Digit Imaging; 2023 Oct; 36(5):1974-1986. PubMed ID: 37340196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of Diffusion Tensor Imaging-Based Tractography of the Corticospinal Tract: A Correlative Study With Intraoperative Magnetic Resonance Imaging and Direct Electrical Subcortical Stimulation.
    Javadi SA; Nabavi A; Giordano M; Faghihzadeh E; Samii A
    Neurosurgery; 2017 Feb; 80(2):287-299. PubMed ID: 28175893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intraoperative mapping and monitoring of the corticospinal tracts with neurophysiological assessment and 3-dimensional ultrasonography-based navigation. Clinical article.
    Nossek E; Korn A; Shahar T; Kanner AA; Yaffe H; Marcovici D; Ben-Harosh C; Ben Ami H; Weinstein M; Shapira-Lichter I; Constantini S; Hendler T; Ram Z
    J Neurosurg; 2011 Mar; 114(3):738-46. PubMed ID: 20799862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intraoperative use of diffusion tensor imaging-based tractography for resection of gliomas located near the pyramidal tract: comparison with subcortical stimulation mapping and contribution to surgical outcomes.
    Vassal F; Schneider F; Nuti C
    Br J Neurosurg; 2013 Oct; 27(5):668-75. PubMed ID: 23458557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffusion tensor imaging tractography and intraoperative neurophysiological monitoring in surgery of intracranial tumors located near the pyramidal tract.
    Zhukov VY; Goryaynov SA; Ogurtsova AA; Ageev IS; Protskiy SV; Pronin IN; Tonoyan AS; Kobyakov GL; Nenashev EA; Smirnov AS; Batalov AI; Potapov AA
    Zh Vopr Neirokhir Im N N Burdenko; 2016; 80(1):5-18. PubMed ID: 27029327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accuracy of diffusion tensor magnetic resonance imaging-based tractography for surgery of gliomas near the pyramidal tract: a significant correlation between subcortical electrical stimulation and postoperative tractography.
    Ohue S; Kohno S; Inoue A; Yamashita D; Harada H; Kumon Y; Kikuchi K; Miki H; Ohnishi T
    Neurosurgery; 2012 Feb; 70(2):283-93; discussion 294. PubMed ID: 21811189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Associations between clinical outcome and navigated transcranial magnetic stimulation characteristics in patients with motor-eloquent brain lesions: a combined navigated transcranial magnetic stimulation-diffusion tensor imaging fiber tracking approach.
    Sollmann N; Wildschuetz N; Kelm A; Conway N; Moser T; Bulubas L; Kirschke JS; Meyer B; Krieg SM
    J Neurosurg; 2018 Mar; 128(3):800-810. PubMed ID: 28362239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of diffusion tensor images of the corticospinal tract in intrinsic brain tumor surgery: a comparison with direct subcortical stimulation.
    Zolal A; Hejčl A; Vachata P; Bartoš R; Humhej I; Malucelli A; Nováková M; Hrach K; Derner M; Sameš M
    Neurosurgery; 2012 Aug; 71(2):331-40; discussion 340. PubMed ID: 22534425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Multi-modality Monitoring Using Direct Electrical Stimulation to Determine Corticospinal Tract Shift and Integrity in Tumors using the Intraoperative MRI.
    Krivosheya D; Rao G; Tummala S; Kumar V; Suki D; Bastos DCA; Prabhu SS
    J Neurol Surg A Cent Eur Neurosurg; 2021 Jul; 82(4):375-380. PubMed ID: 31659724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying accuracy and precision of diffusion MR tractography of the corticospinal tract in brain tumors.
    Mandelli ML; Berger MS; Bucci M; Berman JI; Amirbekian B; Henry RG
    J Neurosurg; 2014 Aug; 121(2):349-58. PubMed ID: 24905560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tractography Verified by Intraoperative Magnetic Resonance Imaging and Subcortical Stimulation During Tumor Resection Near the Corticospinal Tract.
    Münnich T; Klein J; Hattingen E; Noack A; Herrmann E; Seifert V; Senft C; Forster MT
    Oper Neurosurg (Hagerstown); 2019 Feb; 16(2):197-210. PubMed ID: 29669002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of the pyramidal tract by neuronavigation based on intraoperative magnetic resonance tractography: correlation with subcortical stimulation.
    Bozzao A; Romano A; Angelini A; D'Andrea G; Calabria LF; Coppola V; Mastronardi L; Fantozzi LM; Ferrante L
    Eur Radiol; 2010 Oct; 20(10):2475-81. PubMed ID: 20455066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intraoperative magnetic resonance imaging-guided tractography with integrated monopolar subcortical functional mapping for resection of brain tumors. Clinical article.
    Prabhu SS; Gasco J; Tummala S; Weinberg JS; Rao G
    J Neurosurg; 2011 Mar; 114(3):719-26. PubMed ID: 20964594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional MRI vs. navigated TMS to optimize M1 seed volume delineation for DTI tractography. A prospective study in patients with brain tumours adjacent to the corticospinal tract.
    Weiss Lucas C; Tursunova I; Neuschmelting V; Nettekoven C; Oros-Peusquens AM; Stoffels G; Faymonville AM; Jon SN; Langen KJ; Lockau H; Goldbrunner R; Grefkes C
    Neuroimage Clin; 2017; 13():297-309. PubMed ID: 28050345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multimodal navigation in the functional microsurgical resection of intrinsic brain tumors located in eloquent motor areas: role of tractography.
    González-Darder JM; González-López P; Talamantes F; Quilis V; Cortés V; García-March G; Roldán P
    Neurosurg Focus; 2010 Feb; 28(2):E5. PubMed ID: 20121440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A systematic evaluation of intraoperative white matter tract shift in pediatric epilepsy surgery using high-field MRI and probabilistic high angular resolution diffusion imaging tractography.
    Yang JY; Beare R; Seal ML; Harvey AS; Anderson VA; Maixner WJ
    J Neurosurg Pediatr; 2017 May; 19(5):592-605. PubMed ID: 28304232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preoperative imaging to predict intraoperative changes in tumor-to-corticospinal tract distance: an analysis of 45 cases using high-field intraoperative magnetic resonance imaging.
    Shahar T; Rozovski U; Marko NF; Tummala S; Ziu M; Weinberg JS; Rao G; Kumar VA; Sawaya R; Prabhu SS
    Neurosurgery; 2014 Jul; 75(1):23-30. PubMed ID: 24618800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The DTI Challenge: Toward Standardized Evaluation of Diffusion Tensor Imaging Tractography for Neurosurgery.
    Pujol S; Wells W; Pierpaoli C; Brun C; Gee J; Cheng G; Vemuri B; Commowick O; Prima S; Stamm A; Goubran M; Khan A; Peters T; Neher P; Maier-Hein KH; Shi Y; Tristan-Vega A; Veni G; Whitaker R; Styner M; Westin CF; Gouttard S; Norton I; Chauvin L; Mamata H; Gerig G; Nabavi A; Golby A; Kikinis R
    J Neuroimaging; 2015; 25(6):875-82. PubMed ID: 26259925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Navigated transcranial magnetic stimulation for "somatotopic" tractography of the corticospinal tract.
    Conti A; Raffa G; Granata F; Rizzo V; Germanò A; Tomasello F
    Neurosurgery; 2014 Dec; 10 Suppl 4():542-54; discussion 554. PubMed ID: 25072115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is intraoperative diffusion tensor imaging at 3.0T comparable to subcortical corticospinal tract mapping?
    Ostrý S; Belšan T; Otáhal J; Beneš V; Netuka D
    Neurosurgery; 2013 Nov; 73(5):797-807; discussion 806-7. PubMed ID: 23863765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.