BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 37340410)

  • 1. Review article laser-induced hyperthermia on graphene oxide composites.
    González-Rodríguez L; Pérez-Davila S; López-Álvarez M; Chiussi S; Serra J; González P
    J Nanobiotechnology; 2023 Jun; 21(1):196. PubMed ID: 37340410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of thermal dose in moderate clinical hyperthermia with radiotherapy: a relook using temperature-time area under the curve (AUC).
    Datta NR; Marder D; Datta S; Meister A; Puric E; Stutz E; Rogers S; Eberle B; Timm O; Staruch M; Riesterer O; Bodis S
    Int J Hyperthermia; 2021; 38(1):296-307. PubMed ID: 33627018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is CEM43 still a relevant thermal dose parameter for hyperthermia treatment monitoring?
    van Rhoon GC
    Int J Hyperthermia; 2016; 32(1):50-62. PubMed ID: 26758036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved Anticancer Photothermal Therapy Using the Bystander Effect Enhanced by Antiarrhythmic Peptide Conjugated Dopamine-Modified Reduced Graphene Oxide Nanocomposite.
    Yu J; Lin YH; Yang L; Huang CC; Chen L; Wang WC; Chen GW; Yan J; Sawettanun S; Lin CH
    Adv Healthc Mater; 2017 Jan; 6(2):. PubMed ID: 27860462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of CEM43 degrees CT90 thermal dose in superficial hyperthermia: a retrospective analysis.
    de Bruijne M; van der Holt B; van Rhoon GC; van der Zee J
    Strahlenther Onkol; 2010 Aug; 186(8):436-43. PubMed ID: 20803284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced synergetic antibacterial activity by a reduce graphene oxide/Ag nanocomposite through the photothermal effect.
    Tan S; Wu X; Xing Y; Lilak S; Wu M; Zhao JX
    Colloids Surf B Biointerfaces; 2020 Jan; 185():110616. PubMed ID: 31740323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyaluronic acid-modified, IR780-conjugated and doxorubicin-loaded reduced graphene oxide for targeted cancer chemo/photothermal/photodynamic therapy.
    Dash BS; Lu YJ; Pejrprim P; Lan YH; Chen JP
    Biomater Adv; 2022 May; 136():212764. PubMed ID: 35929292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of new magnetite-graphene nanocomposite and comparison of its laser-hyperthermia properties with conventionally prepared magnetite-graphene hybrid.
    Tayyebi A; Moradi S; Azizi F; Outokesh M; Shadanfar K; Mousavi SS
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():572-581. PubMed ID: 28415501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polydopamine-functionalized nanographene oxide: a versatile nanocarrier for chemotherapy and photothermal therapy.
    Zhang X; Nan X; Shi W; Sun Y; Su H; He Y; Liu X; Zhang Z; Ge D
    Nanotechnology; 2017 Jul; 28(29):295102. PubMed ID: 28656906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polydopamine doped reduced graphene oxide/mesoporous silica nanosheets for chemo-photothermal and enhanced photothermal therapy.
    Liu R; Zhang H; Zhang F; Wang X; Liu X; Zhang Y
    Mater Sci Eng C Mater Biol Appl; 2019 Mar; 96():138-145. PubMed ID: 30606519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal Behavior of Graphene Oxide Deposited on 3D-Printed Polylactic Acid for Photothermal Therapy: An Experimental-Numerical Analysis.
    Vence J; Gil C; González-Rodríguez L; López-Álvarez M
    J Funct Biomater; 2023 Jan; 14(2):. PubMed ID: 36826879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A tumor-targeting near-infrared laser-triggered drug delivery system based on GO@Ag nanoparticles for chemo-photothermal therapy and X-ray imaging.
    Shi J; Wang L; Zhang J; Ma R; Gao J; Liu Y; Zhang C; Zhang Z
    Biomaterials; 2014 Jul; 35(22):5847-61. PubMed ID: 24746963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-step synthesis of soy protein/graphene nanocomposites and their application in photothermal therapy.
    Jiang X; Li Z; Yao J; Shao Z; Chen X
    Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():798-804. PubMed ID: 27524082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triggering cell death by nanographene oxide mediated hyperthermia.
    Vila M; Matesanz MC; Gonçalves G; Feito MJ; Linares J; Marques PA; Portolés MT; Vallet-Regi M
    Nanotechnology; 2014 Jan; 25(3):035101. PubMed ID: 24346084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of cancer photothermal therapy using near-infrared radiation and functionalized graphene nanosheets.
    Wang Y; Leng S; Huang J; Shu M; Papavassiliou DV
    Int J Numer Method Biomed Eng; 2020 Jan; 36(1):e3275. PubMed ID: 31680480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A moderate thermal dose is sufficient for effective free and TSL based thermochemotherapy.
    van Rhoon GC; Franckena M; Ten Hagen TLM
    Adv Drug Deliv Rev; 2020; 163-164():145-156. PubMed ID: 32247801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental investigation and histopathological identification of acute thermal damage in skeletal porcine muscle in relation to whole-body SAR, maximum temperature, and CEM43 °C due to RF irradiation in an MR body coil of birdcage type at 123 MHz.
    Nadobny J; Klopfleisch R; Brinker G; Stoltenburg-Didinger G
    Int J Hyperthermia; 2015 Jun; 31(4):409-20. PubMed ID: 25716768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CEM43°C thermal dose thresholds: a potential guide for magnetic resonance radiofrequency exposure levels?
    van Rhoon GC; Samaras T; Yarmolenko PS; Dewhirst MW; Neufeld E; Kuster N
    Eur Radiol; 2013 Aug; 23(8):2215-27. PubMed ID: 23553588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal dosimetry characteristics of deep regional heating of non-muscle invasive bladder cancer.
    Juang T; Stauffer PR; Craciunescu OA; Maccarini PF; Yuan Y; Das SK; Dewhirst MW; Inman BA; Vujaskovic Z
    Int J Hyperthermia; 2014 May; 30(3):176-83. PubMed ID: 24669804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of hyperthermal regimes on experimental teratoma development in vitro.
    Katusic Bojanac A; Rogosic S; Sincic N; Juric-Lekic G; Vlahovic M; Serman L; Jezek D; Bulic-Jakus F
    Int J Exp Pathol; 2018 Jun; 99(3):131-144. PubMed ID: 30066346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.