These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 37340776)

  • 1. Catalytic enhancement of production of solar thermochemical fuels: opportunities and limitations.
    Coronado JM; Bayón A
    Phys Chem Chem Phys; 2023 Jul; 25(26):17092-17106. PubMed ID: 37340776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Review of Oxygen Carrier Materials and Related Thermochemical Redox Processes for Concentrating Solar Thermal Applications.
    Abanades S
    Materials (Basel); 2023 May; 16(9):. PubMed ID: 37176464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A solar tower fuel plant for the thermochemical production of kerosene from H
    Zoller S; Koepf E; Nizamian D; Stephan M; Patané A; Haueter P; Romero M; González-Aguilar J; Lieftink D; de Wit E; Brendelberger S; Sizmann A; Steinfeld A
    Joule; 2022 Jul; 6(7):1606-1616. PubMed ID: 35915707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Review of Solar Thermochemical CO
    Pullar RC; Novais RM; Caetano APF; Barreiros MA; Abanades S; Oliveira FAC
    Front Chem; 2019; 7():601. PubMed ID: 31552219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solar-driven thermochemical conversion of H
    Wei L; Pan Z; Shi X; Esan OC; Li G; Qi H; Wu Q; An L
    iScience; 2023 Nov; 26(11):108127. PubMed ID: 37876816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate Impact and Economic Feasibility of Solar Thermochemical Jet Fuel Production.
    Falter C; Batteiger V; Sizmann A
    Environ Sci Technol; 2016 Jan; 50(1):470-7. PubMed ID: 26641878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solar to fuels conversion technologies: a perspective.
    Tuller HL
    Mater Renew Sustain Energy; 2017; 6(1):3. PubMed ID: 28203516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Technical, economic and environmental analysis of solar thermochemical production of drop-in fuels.
    Moretti C; Patil V; Falter C; Geissbühler L; Patt A; Steinfeld A
    Sci Total Environ; 2023 Nov; 901():166005. PubMed ID: 37541501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria.
    Chueh WC; Falter C; Abbott M; Scipio D; Furler P; Haile SM; Steinfeld A
    Science; 2010 Dec; 330(6012):1797-801. PubMed ID: 21205663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermochemical Activity of Single- and Dual-Phase Oxide Compounds Based on Ceria, Ferrites, and Perovskites for Two-Step Synthetic Fuel Production.
    Le Gal A; Julbe A; Abanades S
    Molecules; 2023 May; 28(11):. PubMed ID: 37298803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-thermal plasma-catalytic processes for CO
    Mukhtar A; Saqib S; Mohotti D; Ndeddy Aka RJ; Hossain M; Agyekum-Oduro E; Wu S
    Environ Sci Pollut Res Int; 2024 Aug; ():. PubMed ID: 39179888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solar thermochemical splitting of water to generate hydrogen.
    Rao CNR; Dey S
    Proc Natl Acad Sci U S A; 2017 Dec; 114(51):13385-13393. PubMed ID: 28522461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of thermochemical water splitting with CO
    Brady C; Davis ME; Xu B
    Proc Natl Acad Sci U S A; 2019 Dec; 116(50):25001-25007. PubMed ID: 31754029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drop-in fuels from sunlight and air.
    Schäppi R; Rutz D; Dähler F; Muroyama A; Haueter P; Lilliestam J; Patt A; Furler P; Steinfeld A
    Nature; 2022 Jan; 601(7891):63-68. PubMed ID: 34732875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper ferrite and cobalt oxide two-layer coated macroporous SiC substrate for efficient CO
    Guene Lougou B; Geng B; Jiang B; Zhang H; Sun Q; Shuai Y; Qu Z; Zhao J; Wang CH
    J Colloid Interface Sci; 2022 Dec; 627():516-531. PubMed ID: 35870404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water Footprint and Land Requirement of Solar Thermochemical Jet-Fuel Production.
    Falter C; Pitz-Paal R
    Environ Sci Technol; 2017 Nov; 51(21):12938-12947. PubMed ID: 28946739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boosted Solar Thermochemical Low-Temperature CO
    Zong T; Shen Q; Han Y; Ruan C; Liu S; Wang C; Tian M; Li L; Zhu Y; Wang X
    ChemSusChem; 2024 Aug; ():e202401295. PubMed ID: 39148488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical Thermodynamic Efficiency Limit of Isothermal Solar Fuel Generation from H
    Wang H; Kong H; Wang J; Liu M; Su B; Lundin SB
    Molecules; 2021 Nov; 26(22):. PubMed ID: 34834141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclic oxygen exchange capacity of Ce-doped V
    Riaz A; Lipiński W; Lowe A
    RSC Adv; 2021 Jun; 11(37):23095-23104. PubMed ID: 35480448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermochemical and electrochemical aspects of carbon dioxide methanation: A sustainable approach to generate fuel via waste to energy theme.
    Ali N; Bilal M; Nazir MS; Khan A; Ali F; Iqbal HMN
    Sci Total Environ; 2020 Apr; 712():136482. PubMed ID: 31931218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.