These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 37341042)
21. Structural and mechanical characterization of bioresorbable, elastomeric nanocomposites from poly(glycerol sebacate)/nanohydroxyapatite for tissue transport applications. Rosenbalm TN; Teruel M; Day CS; Donati GL; Morykwas M; Argenta L; Kuthirummal N; Levi-Polyachenko N J Biomed Mater Res B Appl Biomater; 2016 Oct; 104(7):1366-73. PubMed ID: 26201533 [TBL] [Abstract][Full Text] [Related]
22. Mechanically tissue-like elastomeric polymers and their potential as a vehicle to deliver functional cardiomyocytes. Xu B; Li Y; Fang X; Thouas GA; Cook WD; Newgreen DF; Chen Q J Mech Behav Biomed Mater; 2013 Dec; 28():354-65. PubMed ID: 24125905 [TBL] [Abstract][Full Text] [Related]
24. Biomimetic poly(glycerol sebacate)/poly(l-lactic acid) blend scaffolds for adipose tissue engineering. Frydrych M; Román S; MacNeil S; Chen B Acta Biomater; 2015 May; 18():40-9. PubMed ID: 25769230 [TBL] [Abstract][Full Text] [Related]
25. Fabrication and characterization of tough elastomeric fibrous scaffolds for tissue engineering applications. Sant S; Khademhosseini A Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3546-8. PubMed ID: 21096824 [TBL] [Abstract][Full Text] [Related]
26. A poly(glycerol sebacate) based photo/thermo dual curable biodegradable and biocompatible polymer for biomedical applications. Wang M; Lei D; Liu Z; Chen S; Sun L; Lv Z; Huang P; Jiang Z; You Z J Biomater Sci Polym Ed; 2017 Oct; 28(15):1728-1739. PubMed ID: 28657862 [TBL] [Abstract][Full Text] [Related]
27. Fabrication and evaluation of a nerve guidance conduit capable of Ca Zargar Kharazi A; Dini G; Naser R J Biomed Mater Res A; 2018 Aug; 106(8):2181-2189. PubMed ID: 29637737 [TBL] [Abstract][Full Text] [Related]
28. Effect of different exposure times on physicochemical, mechanical and biological properties of PGS scaffolds treated with plasma of iodine-doped polypyrrole. Martín-Pat GE; Rodriguez-Fuentes N; Cervantes-Uc JM; Rosales-Ibáñez R; Carrillo-Escalante HJ; Ku-Gonzalez AF; Avila-Ortega A; Hernandez-Sanchez F J Biomater Appl; 2020; 35(4-5):485-499. PubMed ID: 32659135 [TBL] [Abstract][Full Text] [Related]
29. Non-linear elasticity of core/shell spun PGS/PLLA fibres and their effect on cell proliferation. Xu B; Rollo B; Stamp LA; Zhang D; Fang X; Newgreen DF; Chen Q Biomaterials; 2013 Sep; 34(27):6306-17. PubMed ID: 23747009 [TBL] [Abstract][Full Text] [Related]
30. Mechanical characterization and non-linear elastic modeling of poly(glycerol sebacate) for soft tissue engineering. Mitsak AG; Dunn AM; Hollister SJ J Mech Behav Biomed Mater; 2012 Jul; 11():3-15. PubMed ID: 22658150 [TBL] [Abstract][Full Text] [Related]
31. Effect of static tensile stress on enzymatic degradation of poly(glycerol sebacate). Wu Z; Wang L; Fan Y J Biomed Mater Res A; 2023 Oct; 111(10):1513-1524. PubMed ID: 37070726 [TBL] [Abstract][Full Text] [Related]
32. [Research process of the preparation of electrostatic spinning of poly-glycerol sebacate and the application in tissue engineering]. Zhang X; Li W Hua Xi Kou Qiang Yi Xue Za Zhi; 2015 Oct; 33(5):539-42. PubMed ID: 26688952 [TBL] [Abstract][Full Text] [Related]
33. PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity. Ma Y; Zhang W; Wang Z; Wang Z; Xie Q; Niu H; Guo H; Yuan Y; Liu C Acta Biomater; 2016 Oct; 44():110-24. PubMed ID: 27544808 [TBL] [Abstract][Full Text] [Related]
34. Criteria for Quick and Consistent Synthesis of Poly(glycerol sebacate) for Tailored Mechanical Properties. Li X; Hong AT; Naskar N; Chung HJ Biomacromolecules; 2015 May; 16(5):1525-33. PubMed ID: 25857651 [TBL] [Abstract][Full Text] [Related]
35. A Review: Optimization for Poly(glycerol sebacate) and Fabrication Techniques for Its Centered Scaffolds. Wu Z; Jin K; Wang L; Fan Y Macromol Biosci; 2021 Sep; 21(9):e2100022. PubMed ID: 34117837 [TBL] [Abstract][Full Text] [Related]
36. The mechanical characteristics and in vitro biocompatibility of poly(glycerol sebacate)-bioglass elastomeric composites. Liang SL; Cook WD; Thouas GA; Chen QZ Biomaterials; 2010 Nov; 31(33):8516-29. PubMed ID: 20739061 [TBL] [Abstract][Full Text] [Related]
37. Hybrid Aorta Constructs via In Situ Crosslinking of Poly(glycerol-sebacate) Elastomer Within a Decellularized Matrix. Guler S; Hosseinian P; Aydin HM Tissue Eng Part C Methods; 2017 Jan; 23(1):21-29. PubMed ID: 27875930 [TBL] [Abstract][Full Text] [Related]
38. Promoting neural cell proliferation and differentiation by incorporating lignin into electrospun poly(vinyl alcohol) and poly(glycerol sebacate) fibers. Saudi A; Amini S; Amirpour N; Kazemi M; Zargar Kharazi A; Salehi H; Rafienia M Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():110005. PubMed ID: 31499996 [TBL] [Abstract][Full Text] [Related]
39. PGS:Gelatin nanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues. Kharaziha M; Nikkhah M; Shin SR; Annabi N; Masoumi N; Gaharwar AK; Camci-Unal G; Khademhosseini A Biomaterials; 2013 Sep; 34(27):6355-66. PubMed ID: 23747008 [TBL] [Abstract][Full Text] [Related]