These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 37341174)
1. Evaluation of the parenchymal distribution of renal steatosis in chronic kidney disease using chemical shift magnetic resonance imaging. Aydın H; Aydın H; Karaibrahimoğlu A; Afsar B Adv Clin Exp Med; 2024 May; 33(5):455-462. PubMed ID: 37341174 [TBL] [Abstract][Full Text] [Related]
2. Renal tissue oxygenation in children with chronic kidney disease due to vesicoureteral reflux. Chehade H; Milani B; Ansaloni A; Anex C; Bassi I; Piskunowicz M; Stuber M; Cachat F; Burnier M; Pruijm M Pediatr Nephrol; 2016 Nov; 31(11):2103-11. PubMed ID: 27230512 [TBL] [Abstract][Full Text] [Related]
3. Kidney morphological parameters measured using noncontrast-enhanced steady-state free precession MRI with spatially selective inversion recovery pulse correlate with eGFR in patients with advanced CKD. Otsuka T; Kaneko Y; Sato Y; Kaseda R; Aoyagi R; Yamamoto S; Goto S; Narita I Clin Exp Nephrol; 2018 Feb; 22(1):45-54. PubMed ID: 28434125 [TBL] [Abstract][Full Text] [Related]
4. mDIXON-Quant for differentiation of renal damage degree in patients with chronic kidney disease. Wang Y; Ju Y; An Q; Lin L; Liu AL Front Endocrinol (Lausanne); 2023; 14():1187042. PubMed ID: 37547308 [TBL] [Abstract][Full Text] [Related]
5. Multiparametric quantitative renal MRI in children and young adults: comparison between healthy individuals and patients with chronic kidney disease. Dillman JR; Benoit SW; Gandhi DB; Trout AT; Tkach JA; VandenHeuvel K; Devarajan P Abdom Radiol (NY); 2022 May; 47(5):1840-1852. PubMed ID: 35237897 [TBL] [Abstract][Full Text] [Related]
6. Noninvasive evaluation of renal oxygenation in children with chronic kidney disease using blood-oxygen-level-dependent magnetic resonance imaging. Luo F; Liao Y; Cui K; Tao Y Pediatr Radiol; 2020 May; 50(6):848-854. PubMed ID: 32062719 [TBL] [Abstract][Full Text] [Related]
7. Determinants of renal tissue oxygenation as measured with BOLD-MRI in chronic kidney disease and hypertension in humans. Pruijm M; Hofmann L; Piskunowicz M; Muller ME; Zweiacker C; Bassi I; Vogt B; Stuber M; Burnier M PLoS One; 2014; 9(4):e95895. PubMed ID: 24760031 [TBL] [Abstract][Full Text] [Related]
8. Cortical Perfusion and Tubular Function as Evaluated by Magnetic Resonance Imaging Correlates with Annual Loss in Renal Function in Moderate Chronic Kidney Disease. Prasad PV; Li LP; Thacker JM; Li W; Hack B; Kohn O; Sprague SM Am J Nephrol; 2019; 49(2):114-124. PubMed ID: 30669143 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of renal function in chronic kidney disease (CKD) by mDIXON-Quant and Amide Proton Transfer weighted (APTw) imaging. Ju Y; Wang Y; Luo RN; Wang N; Wang JZ; Lin LJ; Song QW; Liu AL Magn Reson Imaging; 2023 Nov; 103():102-108. PubMed ID: 37451519 [TBL] [Abstract][Full Text] [Related]
10. Value of multiparametric magnetic resonance imaging for evaluating chronic kidney disease and renal fibrosis. Hua C; Qiu L; Zhou L; Zhuang Y; Cai T; Xu B; Hao S; Fang X; Wang L; Jiang H Eur Radiol; 2023 Aug; 33(8):5211-5221. PubMed ID: 37148348 [TBL] [Abstract][Full Text] [Related]
11. Renal fat fraction and diffusion tensor imaging in patients with early-stage diabetic nephropathy. Wang YC; Feng Y; Lu CQ; Ju S Eur Radiol; 2018 Aug; 28(8):3326-3334. PubMed ID: 29450711 [TBL] [Abstract][Full Text] [Related]
12. Renal fat fraction is significantly associated with the risk of chronic kidney disease in patients with type 2 diabetes. Shen Y; Xie L; Chen X; Mao L; Qin Y; Lan R; Yang S; Hu J; Li X; Ye H; Luo W; Gong L; Li Q; Mao Y; Wang Z Front Endocrinol (Lausanne); 2022; 13():995028. PubMed ID: 36246918 [TBL] [Abstract][Full Text] [Related]
13. Magnetic resonance elastography for evaluation of renal parenchyma in chronic kidney disease: a pilot study. Han JH; Ahn JH; Kim JS Radiol Med; 2020 Dec; 125(12):1209-1215. PubMed ID: 32367323 [TBL] [Abstract][Full Text] [Related]
14. Application of BOLD-MRI in the classification of renal function in chronic kidney disease. Li C; Liu H; Li X; Zhou L; Wang R; Zhang Y Abdom Radiol (NY); 2019 Feb; 44(2):604-611. PubMed ID: 30151714 [TBL] [Abstract][Full Text] [Related]
15. Amide proton transfer magnetic resonance imaging to evaluate renal impairment in patients with chronic kidney disease. Ju Y; Liu A; Wang Y; Chen L; Wang N; Bu X; Du C; Jiang H; Wang J; Lin L Magn Reson Imaging; 2022 Apr; 87():177-182. PubMed ID: 34863880 [TBL] [Abstract][Full Text] [Related]
16. Chronic kidney disease: Pathological and functional evaluation with intravoxel incoherent motion diffusion-weighted imaging. Mao W; Zhou J; Zeng M; Ding Y; Qu L; Chen C; Ding X; Wang Y; Fu C J Magn Reson Imaging; 2018 May; 47(5):1251-1259. PubMed ID: 28940646 [TBL] [Abstract][Full Text] [Related]
17. Diffusion kurtosis imaging for the assessment of renal fibrosis of chronic kidney disease: A preliminary study. Mao W; Ding Y; Ding X; Fu C; Zeng M; Zhou J Magn Reson Imaging; 2021 Jul; 80():113-120. PubMed ID: 33971241 [TBL] [Abstract][Full Text] [Related]
18. Quantitative magnetic resonance imaging of chronic kidney disease: an experimental in vivo study using rat chronic kidney disease models. Kim SY; Kim H; Lee J; Jung SI; Moon MH; Joo KW; Cho JY Acta Radiol; 2023 Jan; 64(1):404-414. PubMed ID: 34928730 [TBL] [Abstract][Full Text] [Related]
19. Non-Contrast Renal Magnetic Resonance Imaging to Assess Perfusion and Corticomedullary Differentiation in Health and Chronic Kidney Disease. Gillis KA; McComb C; Patel RK; Stevens KK; Schneider MP; Radjenovic A; Morris ST; Roditi GH; Delles C; Mark PB Nephron; 2016; 133(3):183-92. PubMed ID: 27362585 [TBL] [Abstract][Full Text] [Related]
20. Pathological assessment of chronic kidney disease with DWI: Is there an added value for diffusion kurtosis imaging? Mao W; Ding Y; Ding X; Wang Y; Fu C; Zeng M; Zhou J J Magn Reson Imaging; 2021 Aug; 54(2):508-517. PubMed ID: 33634937 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]