BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 37341453)

  • 1. Microscopic Origin of Electrochemical Capacitance in Metal-Organic Frameworks.
    Shin SJ; Gittins JW; Golomb MJ; Forse AC; Walsh A
    J Am Chem Soc; 2023 Jul; 145(26):14529-14538. PubMed ID: 37341453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding Electrolyte Ion Size Effects on the Performance of Conducting Metal-Organic Framework Supercapacitors.
    Gittins JW; Ge K; Balhatchet CJ; Taberna PL; Simon P; Forse AC
    J Am Chem Soc; 2024 May; 146(18):12473-12484. PubMed ID: 38716517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into the electric double-layer capacitance of two-dimensional electrically conductive metal-organic frameworks.
    Gittins JW; Balhatchet CJ; Chen Y; Liu C; Madden DG; Britto S; Golomb MJ; Walsh A; Fairen-Jimenez D; Dutton SE; Forse AC
    J Mater Chem A Mater; 2021 Jul; 9(29):16006-16015. PubMed ID: 34354834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Realization of Uniform Growth of Conductive MOFs on LDHs and Their High Performance in Supercapacitors.
    Liu L; Lu J; Zhang Y; Pang H; Zhu R
    Chem Asian J; 2024 Jan; 19(1):e202300819. PubMed ID: 37973612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orientation Control of a Two-Dimensional Conductive Metal-Organic Framework Thin Film by a Pyridine Vapor-Assisted Dry Process.
    Chon S; Nakayama R; Iwamoto S; Kobayashi S; Shimizu R; Hitosugi T
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):56057-56063. PubMed ID: 38009945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Negative electrodes for supercapacitors with good performance using conductive bismuth-catecholate metal-organic frameworks.
    Chen S; Zhang H; Li X; Liu Y; Zhang M; Gao X; Chang X; Pu X; He C
    Dalton Trans; 2023 Apr; 52(15):4826-4834. PubMed ID: 36939173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Successful In Situ Growth of Conductive MOFs on 2D Cobalt-Based Compounds and Their Electrochemical Performance.
    Liu L; Zhang Y; Song Y; Gu Y; Pang H; Zhu R
    Inorg Chem; 2024 Jun; 63(22):10324-10334. PubMed ID: 38773678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative control over the morphology of Cu
    Snook KM; Zasada LB; Chehada D; Xiao DJ
    Chem Sci; 2022 Sep; 13(35):10472-10478. PubMed ID: 36277645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conductive MOF electrodes for stable supercapacitors with high areal capacitance.
    Sheberla D; Bachman JC; Elias JS; Sun CJ; Shao-Horn Y; Dincă M
    Nat Mater; 2017 Feb; 16(2):220-224. PubMed ID: 27723738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triphenylene-Bridged Trinuclear Complexes of Cu: Models for Spin Interactions in Two-Dimensional Electrically Conductive Metal-Organic Frameworks.
    Yang L; He X; Dincă M
    J Am Chem Soc; 2019 Jul; 141(26):10475-10480. PubMed ID: 31180665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ruthenium(II) complex-grafted conductive metal-organic frameworks with conductivity- and confinement-enhanced electrochemiluminescence for ultrasensitive biosensing application.
    Zhang JL; Gao S; Yang Y; Liang WB; Lu ML; Zhang XY; Xiao HX; Li Y; Yuan R; Xiao DR
    Biosens Bioelectron; 2023 May; 227():115157. PubMed ID: 36841115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semiconducting Cu
    Guo C; Li Z; Duan F; Zhang Z; Marchetti F; Du M
    J Mater Chem B; 2020 Nov; 8(43):9951-9960. PubMed ID: 33034309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the Mechanism of High Capacitance in Nickel Hexaaminobenzene-Based Conductive Metal-Organic Frameworks in Aqueous Electrolytes.
    Lukatskaya MR; Feng D; Bak SM; To JWF; Yang XQ; Cui Y; Feldblyum JI; Bao Z
    ACS Nano; 2020 Nov; 14(11):15919-15925. PubMed ID: 33166110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum Capacitance through Molecular Infiltration of 7,7,8,8-Tetracyanoquinodimethane in Metal-Organic Framework/Covalent Organic Framework Hybrids.
    Peng H; Huang S; Tranca D; Richard F; Baaziz W; Zhuang X; Samorì P; Ciesielski A
    ACS Nano; 2021 Nov; 15(11):18580-18589. PubMed ID: 34766761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. When Conductive MOFs Meet MnO
    Duan H; Zhao Z; Lu J; Hu W; Zhang Y; Li S; Zhang M; Zhu R; Pang H
    ACS Appl Mater Interfaces; 2021 Jul; 13(28):33083-33090. PubMed ID: 34235934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epitaxial Self-Assembly of Interfaces of 2D Metal-Organic Frameworks for Electroanalytical Detection of Neurotransmitters.
    Stolz RM; Kolln AF; Rocha BC; Brinks A; Eagleton AM; Mendecki L; Vashisth H; Mirica KA
    ACS Nano; 2022 Sep; 16(9):13869-13883. PubMed ID: 36099649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2D Semiconducting Metal-Organic Framework Thin Films for Organic Spin Valves.
    Song X; Wang X; Li Y; Zheng C; Zhang B; Di CA; Li F; Jin C; Mi W; Chen L; Hu W
    Angew Chem Int Ed Engl; 2020 Jan; 59(3):1118-1123. PubMed ID: 31659842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overcoming Diffusion Limitation of Faradaic Processes: Property-Performance Relationships of 2D Conductive Metal-Organic Framework Cu
    Wrogemann JM; Lüther MJ; Bärmann P; Lounasvuori M; Javed A; Tiemann M; Golnak R; Xiao J; Petit T; Placke T; Winter M
    Angew Chem Int Ed Engl; 2023 Jun; 62(26):e202303111. PubMed ID: 37069123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cu₃(hexaiminotriphenylene)₂: an electrically conductive 2D metal-organic framework for chemiresistive sensing.
    Campbell MG; Sheberla D; Liu SF; Swager TM; Dincă M
    Angew Chem Int Ed Engl; 2015 Mar; 54(14):4349-52. PubMed ID: 25678397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ag Nanoparticles-Induced Metallic Conductivity in Thin Films of 2D Metal-Organic Framework Cu
    Saha S; Ananthram KS; Hassan N; Ugale A; Tarafder K; Ballav N
    Nano Lett; 2023 Oct; 23(20):9326-9332. PubMed ID: 37843499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.