These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37341784)

  • 1. Learning black- and gray-box chemotactic PDEs/closures from agent based Monte Carlo simulation data.
    Lee S; Psarellis YM; Siettos CI; Kevrekidis IG
    J Math Biol; 2023 Jun; 87(1):15. PubMed ID: 37341784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coarse-scale PDEs from fine-scale observations via machine learning.
    Lee S; Kooshkbaghi M; Spiliotis K; Siettos CI; Kevrekidis IG
    Chaos; 2020 Jan; 30(1):013141. PubMed ID: 32013472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning effective stochastic differential equations from microscopic simulations: Linking stochastic numerics to deep learning.
    Dietrich F; Makeev A; Kevrekidis G; Evangelou N; Bertalan T; Reich S; Kevrekidis IG
    Chaos; 2023 Feb; 33(2):023121. PubMed ID: 36859209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Particles to partial differential equations parsimoniously.
    Arbabi H; Kevrekidis IG
    Chaos; 2021 Mar; 31(3):033137. PubMed ID: 33810723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forecasting and Predicting Stochastic Agent-Based Model Data with Biologically-Informed Neural Networks.
    Nardini JT
    Bull Math Biol; 2024 Sep; 86(11):130. PubMed ID: 39307859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural network approach to data-driven estimation of chemotactic sensitivity in the Keller-Segel model.
    Hwang S; Lee S; Hwang HJ
    Math Biosci Eng; 2021 Sep; 18(6):8524-8534. PubMed ID: 34814310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fractional chemotaxis diffusion equations.
    Langlands TA; Henry BI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051102. PubMed ID: 20866180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macroscopic equations for bacterial chemotaxis: integration of detailed biochemistry of cell signaling.
    Xue C
    J Math Biol; 2015 Jan; 70(1-2):1-44. PubMed ID: 24366373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of internal dynamics on chemotactic aggregation of bacteria.
    Yasuda S
    Phys Biol; 2021 Sep; 18(6):. PubMed ID: 34425564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatially distributed stochastic systems: Equation-free and equation-assisted preconditioned computations.
    Qiao L; Erban R; Kelley CT; Kevrekidis IG
    J Chem Phys; 2006 Nov; 125(20):204108. PubMed ID: 17144691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine-learning-based data-driven discovery of nonlinear phase-field dynamics.
    Kiyani E; Silber S; Kooshkbaghi M; Karttunen M
    Phys Rev E; 2022 Dec; 106(6-2):065303. PubMed ID: 36671129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiscale dynamics of biological cells with chemotactic interactions: from a discrete stochastic model to a continuous description.
    Alber M; Chen N; Glimm T; Lushnikov PM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 1):051901. PubMed ID: 16802961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiscale spatial Monte Carlo simulations: multigriding, computational singular perturbation, and hierarchical stochastic closures.
    Chatterjee A; Vlachos DG
    J Chem Phys; 2006 Feb; 124(6):64110. PubMed ID: 16483199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PDE-LEARN: Using deep learning to discover partial differential equations from noisy, limited data.
    Stephany R; Earls C
    Neural Netw; 2024 Jun; 174():106242. PubMed ID: 38521016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning differential equation models from stochastic agent-based model simulations.
    Nardini JT; Baker RE; Simpson MJ; Flores KB
    J R Soc Interface; 2021 Mar; 18(176):20200987. PubMed ID: 33726540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal search in E. coli chemotaxis.
    Dev S; Chatterjee S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042714. PubMed ID: 25974534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MPEXS-DNA, a new GPU-based Monte Carlo simulator for track structures and radiation chemistry at subcellular scale.
    Okada S; Murakami K; Incerti S; Amako K; Sasaki T
    Med Phys; 2019 Mar; 46(3):1483-1500. PubMed ID: 30593679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DeepBeam: a machine learning framework for tuning the primary electron beam of the PRIMO Monte Carlo software.
    Tabor Z; Kabat D; Waligórski MPR
    Radiat Oncol; 2021 Jun; 16(1):124. PubMed ID: 34187495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coarse-grained computations for a micellar system.
    Kopelevich DI; Panagiotopoulos AZ; Kevrekidis IG
    J Chem Phys; 2005 Jan; 122(4):44907. PubMed ID: 15740298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial modeling of dimerization reaction dynamics in the plasma membrane: Monte Carlo vs. continuum differential equations.
    Mayawala K; Vlachos DG; Edwards JS
    Biophys Chem; 2006 Jun; 121(3):194-208. PubMed ID: 16504372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.