These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 37341790)
1. ZmAGO18b negatively regulates maize resistance against southern leaf blight. Dai Z; Yang Q; Chen D; Li B; Que J; Hu L; Zhang B; Zhang Z; Chen K; Zhang S; Lai Z Theor Appl Genet; 2023 Jun; 136(7):158. PubMed ID: 37341790 [TBL] [Abstract][Full Text] [Related]
2. Identification of a locus in maize controlling response to a host-selective toxin derived from Cochliobolus heterostrophus, causal agent of southern leaf blight. Xiaodong X; Olukolu B; Yang Q; Balint-Kurti P Theor Appl Genet; 2018 Dec; 131(12):2601-2612. PubMed ID: 30191251 [TBL] [Abstract][Full Text] [Related]
3. Copper Ions are Required for Zhang Y; Zhang Y; Yu D; Peng Y; Min H; Lai Z Phytopathology; 2020 Feb; 110(2):494-504. PubMed ID: 31464158 [No Abstract] [Full Text] [Related]
4. Endophytic Metarhizium robertsii suppresses the phytopathogen, Cochliobolus heterostrophus and modulates maize defenses. Ahmad I; Jiménez-Gasco MDM; Luthe DS; Barbercheck ME PLoS One; 2022; 17(9):e0272944. PubMed ID: 36137142 [TBL] [Abstract][Full Text] [Related]
5. A leucine-rich repeat receptor kinase gene confers quantitative susceptibility to maize southern leaf blight. Chen C; Zhao Y; Tabor G; Nian H; Phillips J; Wolters P; Yang Q; Balint-Kurti P New Phytol; 2023 May; 238(3):1182-1197. PubMed ID: 36721267 [TBL] [Abstract][Full Text] [Related]
6. Infection-specific transcriptional patterns of the maize pathogen Cochliobolus heterostrophus unravel genes involved in asexual development and virulence. Yu H; Zhang J; Fan J; Jia W; Lv Y; Pan H; Zhang X Mol Plant Pathol; 2024 Jan; 25(1):e13413. PubMed ID: 38279855 [TBL] [Abstract][Full Text] [Related]
7. A ToxA-like protein from Cochliobolus heterostrophus induces light-dependent leaf necrosis and acts as a virulence factor with host selectivity on maize. Lu S; Gillian Turgeon B; Edwards MC Fungal Genet Biol; 2015 Aug; 81():12-24. PubMed ID: 26051492 [TBL] [Abstract][Full Text] [Related]
8. Physiological and Molecular Characteristics of Southern Leaf Blight Resistance in Sweet Corn Inbred Lines. Xiong C; Mo H; Fan J; Ren W; Pei H; Zhang Y; Ma Z; Wang W; Huang J Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142144 [TBL] [Abstract][Full Text] [Related]
9. Genetic basis of resistance to southern corn leaf blight in the maize multi-parent population and diversity panel. Chen G; Xiao Y; Dai S; Dai Z; Wang X; Li B; Jaqueth JS; Li W; Lai Z; Ding J; Yan J Plant Biotechnol J; 2023 Mar; 21(3):506-520. PubMed ID: 36383026 [TBL] [Abstract][Full Text] [Related]
10. Precise mapping of quantitative trait loci for resistance to southern leaf blight, caused by Cochliobolus heterostrophus race O, and flowering time using advanced intercross maize lines. Balint-Kurti PJ; Zwonitzer JC; Wisser RJ; Carson ML; Oropeza-Rosas MA; Holland JB; Szalma SJ Genetics; 2007 May; 176(1):645-57. PubMed ID: 17339203 [TBL] [Abstract][Full Text] [Related]
11. Metabolomics by UHPLC-HRMS reveals the impact of heat stress on pathogen-elicited immunity in maize. Christensen SA; Santana EA; Alborn HT; Block AK; Chamberlain CA Metabolomics; 2021 Jan; 17(1):6. PubMed ID: 33400019 [TBL] [Abstract][Full Text] [Related]
12. The potential roles of different metacaspases in maize defense response. Ma S; Shi H; Wang GF Plant Signal Behav; 2021 Jun; 16(6):1906574. PubMed ID: 33843433 [TBL] [Abstract][Full Text] [Related]
13. Identification of quantitative trait Loci for resistance to southern leaf blight and days to anthesis in two maize recombinant inbred line populations. Balint-Kurti PJ; Zwonitzer JC; Pè ME; Pea G; Lee M; Cardinal AJ Phytopathology; 2008 Mar; 98(3):315-20. PubMed ID: 18944082 [TBL] [Abstract][Full Text] [Related]
14. The AP-1-like transcription factor ChAP1 balances tolerance and cell death in the response of the maize pathogen Cochliobolus heterostrophus to a plant phenolic. Simaan H; Shalaby S; Hatoel M; Karinski O; Goldshmidt-Tran O; Horwitz BA Curr Genet; 2020 Feb; 66(1):187-203. PubMed ID: 31312934 [TBL] [Abstract][Full Text] [Related]
15. Maize death acids, 9-lipoxygenase-derived cyclopente(a)nones, display activity as cytotoxic phytoalexins and transcriptional mediators. Christensen SA; Huffaker A; Kaplan F; Sims J; Ziemann S; Doehlemann G; Ji L; Schmitz RJ; Kolomiets MV; Alborn HT; Mori N; Jander G; Ni X; Sartor RC; Byers S; Abdo Z; Schmelz EA Proc Natl Acad Sci U S A; 2015 Sep; 112(36):11407-12. PubMed ID: 26305953 [TBL] [Abstract][Full Text] [Related]
16. Genome-wide association mapping reveals novel sources of resistance to northern corn leaf blight in maize. Ding J; Ali F; Chen G; Li H; Mahuku G; Yang N; Narro L; Magorokosho C; Makumbi D; Yan J BMC Plant Biol; 2015 Aug; 15():206. PubMed ID: 26289207 [TBL] [Abstract][Full Text] [Related]
17. Identification and fine mapping of rhm1 locus for resistance to Southern corn leaf blight in maize. Zhao Y; Lu X; Liu C; Guan H; Zhang M; Li Z; Cai H; Lai J J Integr Plant Biol; 2012 May; 54(5):321-9. PubMed ID: 22348228 [TBL] [Abstract][Full Text] [Related]
18. Iron, oxidative stress, and virulence: roles of iron-sensitive transcription factor Sre1 and the redox sensor ChAp1 in the maize pathogen Cochliobolus heterostrophus. Zhang N; MohdZainudin NA; Scher K; Condon BJ; Horwitz BA; Turgeon BG Mol Plant Microbe Interact; 2013 Dec; 26(12):1473-85. PubMed ID: 23980626 [TBL] [Abstract][Full Text] [Related]
19. Molecular Mechanism Underlying Pathogenicity Inhibition by Chitosan in Yu H; Su L; Jia W; Jia M; Pan H; Zhang X J Agric Food Chem; 2024 Feb; 72(8):3926-3936. PubMed ID: 38365616 [TBL] [Abstract][Full Text] [Related]
20. Maize Introgression Library Provides Evidence for the Involvement of Kolkman JM; Strable J; Harline K; Kroon DE; Wiesner-Hanks T; Bradbury PJ; Nelson RJ G3 (Bethesda); 2020 Oct; 10(10):3611-3622. PubMed ID: 32816917 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]