BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 37341993)

  • 1. Age prediction from human blood plasma using proteomic and small RNA data: a comparative analysis.
    Salignon J; Faridani OR; Miliotis T; Janssens GE; Chen P; Zarrouki B; Sandberg R; Davidsson P; Riedel CG
    Aging (Albany NY); 2023 Jun; 15(12):5240-5265. PubMed ID: 37341993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unique small RNA signatures uncovered in the tammar wallaby genome.
    Lindsay J; Carone DM; Brown J; Hall L; Qureshi S; Mitchell SE; Jannetty N; Hannon G; Renfree M; Pask A; O'Neill M; O'Neill R
    BMC Genomics; 2012 Oct; 13():559. PubMed ID: 23075437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and profiling of novel microRNAs in the Brassica rapa genome based on small RNA deep sequencing.
    Kim B; Yu HJ; Park SG; Shin JY; Oh M; Kim N; Mun JH
    BMC Plant Biol; 2012 Nov; 12():218. PubMed ID: 23163954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative proteomic analysis of human plasma using tandem mass tags to identify novel biomarkers for herpes zoster.
    Wang T; Shen H; Deng H; Pan H; He Q; Ni H; Tao J; Liu S; Xu L; Yao M
    J Proteomics; 2020 Aug; 225():103879. PubMed ID: 32585426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep sequencing of small RNAs identifies canonical and non-canonical miRNA and endogenous siRNAs in mammalian somatic tissues.
    Castellano L; Stebbing J
    Nucleic Acids Res; 2013 Mar; 41(5):3339-51. PubMed ID: 23325850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive profiling of Small RNAs in human embryo-conditioned culture media by improved sequencing and quantitative PCR methods.
    Russell SJ; Menezes K; Balakier H; Librach C
    Syst Biol Reprod Med; 2020 Apr; 66(2):129-139. PubMed ID: 32053759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of altered 3'- UTR miRNA-binding sites from RNA-Seq data: the swine leukocyte antigen complex (SLA) as a model region.
    Endale Ahanda ML; Fritz ER; Estellé J; Hu ZL; Madsen O; Groenen MA; Beraldi D; Kapetanovic R; Hume DA; Rowland RR; Lunney JK; Rogel-Gaillard C; Reecy JM; Giuffra E
    PLoS One; 2012; 7(11):e48607. PubMed ID: 23139801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. miRNA and Proteomic Dysregulation in Non-Small Cell Lung Cancer in Response to Cigarette Smoke.
    Babu N; Advani J; Solanki HS; Patel K; Jain A; Khan AA; Radhakrishnan A; Sahasrabuddhe NA; Mathur PP; Nair B; Keshava Prasad TS; Chang X; Sidransky D; Gowda H; Chatterjee A
    Microrna; 2018; 7(1):38-53. PubMed ID: 29299995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promoter-based identification of novel non-coding RNAs reveals the presence of dicistronic snoRNA-miRNA genes in Arabidopsis thaliana.
    Qu G; Kruszka K; Plewka P; Yang SY; Chiou TJ; Jarmolowski A; Szweykowska-Kulinska Z; Echeverria M; Karlowski WM
    BMC Genomics; 2015 Nov; 16():1009. PubMed ID: 26607788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput sequencing of small RNA transcriptomes reveals critical biological features targeted by microRNAs in cell models used for squamous cell cancer research.
    Severino P; Oliveira LS; Torres N; Andreghetto FM; Klingbeil Mde F; Moyses R; Wünsch-Filho V; Nunes FD; Mathor MB; Paschoal AR; Durham AM
    BMC Genomics; 2013 Oct; 14():735. PubMed ID: 24160351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of novel microRNAs in Hevea brasiliensis and computational prediction of their targets.
    Gébelin V; Argout X; Engchuan W; Pitollat B; Duan C; Montoro P; Leclercq J
    BMC Plant Biol; 2012 Feb; 12():18. PubMed ID: 22330773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A least angle regression model for the prediction of canonical and non-canonical miRNA-mRNA interactions.
    Engelmann JC; Spang R
    PLoS One; 2012; 7(7):e40634. PubMed ID: 22815777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods of quantifying microRNAs for hypoxia research: classic and next generation.
    Radovich M; Ragoussis J
    Antioxid Redox Signal; 2014 Sep; 21(8):1239-48. PubMed ID: 24328936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the miRNome and piRNome of bovine blood and plasma by small RNA sequencing.
    Spornraft M; Kirchner B; Pfaffl MW; Riedmaier I
    Biotechnol Lett; 2015 Jun; 37(6):1165-76. PubMed ID: 25700822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MicroRNAs: new candidates for the regulation of the human cumulus-oocyte complex.
    Assou S; Al-edani T; Haouzi D; Philippe N; Lecellier CH; Piquemal D; Commes T; Aït-Ahmed O; Dechaud H; Hamamah S
    Hum Reprod; 2013 Nov; 28(11):3038-49. PubMed ID: 23904466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small RNA expression from viruses, bacteria and human miRNAs in colon cancer tissue and its association with microsatellite instability and tumor location.
    Mjelle R; Sjursen W; Thommesen L; Sætrom P; Hofsli E
    BMC Cancer; 2019 Feb; 19(1):161. PubMed ID: 30786859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conservation and divergence of microRNAs in Populus.
    Barakat A; Wall PK; Diloreto S; Depamphilis CW; Carlson JE
    BMC Genomics; 2007 Dec; 8():481. PubMed ID: 18166134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel microRNAs differentially expressed during aging in the mouse brain.
    Inukai S; de Lencastre A; Turner M; Slack F
    PLoS One; 2012; 7(7):e40028. PubMed ID: 22844398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Taxus microRNAs and their targets with high-throughput sequencing and degradome analysis.
    Hao DC; Yang L; Xiao PG; Liu M
    Physiol Plant; 2012 Dec; 146(4):388-403. PubMed ID: 22708792
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.