BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 37342006)

  • 21. Key bacterial taxa determine longitudinal dynamics of aromatic amino acid catabolism in infants' gut.
    Laursen MF; Sinha AK; Pedersen M; Roager HM
    Gut Microbes; 2023; 15(1):2221426. PubMed ID: 37357437
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of long-term antibiotic treatment on mice urinary aromatic amino acid profiles.
    Zhu X; Fu B; Dong M; Guo Y; Cao Z; Wu J
    Biosci Rep; 2021 Jan; 41(1):. PubMed ID: 33269386
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bifidobacterium species associated with breastfeeding produce aromatic lactic acids in the infant gut.
    Laursen MF; Sakanaka M; von Burg N; Mörbe U; Andersen D; Moll JM; Pekmez CT; Rivollier A; Michaelsen KF; Mølgaard C; Lind MV; Dragsted LO; Katayama T; Frandsen HL; Vinggaard AM; Bahl MI; Brix S; Agace W; Licht TR; Roager HM
    Nat Microbiol; 2021 Nov; 6(11):1367-1382. PubMed ID: 34675385
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biological Effects of Indole-3-Propionic Acid, a Gut Microbiota-Derived Metabolite, and Its Precursor Tryptophan in Mammals' Health and Disease.
    Konopelski P; Mogilnicka I
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163143
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gut Microbial Metabolites of Aromatic Amino Acids as Signals in Host-Microbe Interplay.
    Liu Y; Hou Y; Wang G; Zheng X; Hao H
    Trends Endocrinol Metab; 2020 Nov; 31(11):818-834. PubMed ID: 32284282
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Human gut-associated
    Yong CC; Sakurai T; Kaneko H; Horigome A; Mitsuyama E; Nakajima A; Katoh T; Sakanaka M; Abe T; Xiao JZ; Tanaka M; Odamaki T; Katayama T
    Gut Microbes; 2024; 16(1):2347728. PubMed ID: 38706226
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A host-gut microbial amino acid co-metabolite,
    Stachulski AV; Knausenberger TB; Shah SN; Hoyles L; McArthur S
    Tissue Barriers; 2023 Jan; 11(1):2073175. PubMed ID: 35596559
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isolation and Quantification of Uremic Toxin Precursor-Generating Gut Bacteria in Chronic Kidney Disease Patients.
    Gryp T; Huys GRB; Joossens M; Van Biesen W; Glorieux G; Vaneechoutte M
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32183306
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimization of GC/TOF MS analysis conditions for assessing host-gut microbiota metabolic interactions: Chinese rhubarb alters fecal aromatic amino acids and phenol metabolism.
    Yin S; Guo P; Hai D; Xu L; Shu J; Zhang W; Khan MI; Kurland IJ; Qiu Y; Liu Y
    Anal Chim Acta; 2017 Dec; 995():21-33. PubMed ID: 29126478
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors.
    Li XS; Obeid S; Klingenberg R; Gencer B; Mach F; Räber L; Windecker S; Rodondi N; Nanchen D; Muller O; Miranda MX; Matter CM; Wu Y; Li L; Wang Z; Alamri HS; Gogonea V; Chung YM; Tang WH; Hazen SL; Lüscher TF
    Eur Heart J; 2017 Mar; 38(11):814-824. PubMed ID: 28077467
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The gut microbiota-related metabolite phenylacetylglutamine associates with increased risk of incident coronary artery disease.
    Ottosson F; Brunkwall L; Smith E; Orho-Melander M; Nilsson PM; Fernandez C; Melander O
    J Hypertens; 2020 Dec; 38(12):2427-2434. PubMed ID: 32665522
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasma Gut Microbe-Derived Metabolites Associated with Peripheral Artery Disease and Major Adverse Cardiac Events.
    Ho KJ; Ramirez JL; Kulkarni R; Harris KG; Helenowski I; Xiong L; Ozaki CK; Grenon SM
    Microorganisms; 2022 Oct; 10(10):. PubMed ID: 36296342
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gut Microbiota-Derived Metabolites and Cardiovascular Disease Risk: A Systematic Review of Prospective Cohort Studies.
    Sanchez-Gimenez R; Ahmed-Khodja W; Molina Y; Peiró OM; Bonet G; Carrasquer A; Fragkiadakis GA; Bulló M; Bardaji A; Papandreou C
    Nutrients; 2022 Jun; 14(13):. PubMed ID: 35807835
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determination and Application of Nineteen Monoamines in the Gut Microbiota Targeting Phenylalanine, Tryptophan, and Glutamic Acid Metabolic Pathways.
    Ma SR; Yu JB; Fu J; Pan LB; Yu H; Han P; Zhang ZW; Peng R; Xu H; Wang Y
    Molecules; 2021 Mar; 26(5):. PubMed ID: 33806510
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Alteration of Gut Microbial Metabolites in the Systemic Circulation of Patients with Parkinson's Disease.
    Chen SJ; Chen CC; Liao HY; Wu YW; Liou JM; Wu MS; Kuo CH; Lin CH
    J Parkinsons Dis; 2022; 12(4):1219-1230. PubMed ID: 35342048
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oral Administration of Porphyromonas gingivalis Alters the Gut Microbiome and Serum Metabolome.
    Kato T; Yamazaki K; Nakajima M; Date Y; Kikuchi J; Hase K; Ohno H; Yamazaki K
    mSphere; 2018 Oct; 3(5):. PubMed ID: 30333180
    [TBL] [Abstract][Full Text] [Related]  

  • 37. β-Glucan alleviates mice with ulcerative colitis through interactions between gut microbes and amino acids metabolism.
    Liu C; Sun C; Cheng Y
    J Sci Food Agric; 2023 Jun; 103(8):4006-4016. PubMed ID: 36433918
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prognostic value of gut microbiota-derived metabolites in patients with ST-segment elevation myocardial infarction.
    Zhao S; Tian Y; Wang S; Yang F; Xu J; Qin Z; Liu X; Cao M; Zhao P; Zhang G; Wang Z; Zhang Y; Wang Y; Lin K; Fang S; Wang Z; Han T; Tian M; Yin H; Tian J; Yu B
    Am J Clin Nutr; 2023 Mar; 117(3):499-508. PubMed ID: 36811471
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Beneficial actions of microbiota-derived tryptophan metabolites.
    Galligan JJ
    Neurogastroenterol Motil; 2018 Feb; 30(2):. PubMed ID: 29341448
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gut microbiota-derived tryptophan metabolism mediates renal fibrosis by aryl hydrocarbon receptor signaling activation.
    Liu JR; Miao H; Deng DQ; Vaziri ND; Li P; Zhao YY
    Cell Mol Life Sci; 2021 Feb; 78(3):909-922. PubMed ID: 32965514
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.