These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 37342023)
1. Noise-induced switching in dynamics of oscillating populations coupled by migration. Ryashko L; Belyaev A; Bashkirtseva I Chaos; 2023 Jun; 33(6):. PubMed ID: 37342023 [TBL] [Abstract][Full Text] [Related]
2. Chaotic transients, riddled basins, and stochastic transitions in coupled periodic logistic maps. Bashkirtseva I; Ryashko L Chaos; 2021 May; 31(5):053101. PubMed ID: 34240946 [TBL] [Abstract][Full Text] [Related]
3. Stochastic transformations of multi-rhythmic dynamics and order-chaos transitions in a discrete 2D model. Tsvetkov I; Bashkirtseva I; Ryashko L Chaos; 2021 Jun; 31(6):063121. PubMed ID: 34241322 [TBL] [Abstract][Full Text] [Related]
4. Stochastic Sensitivity Analysis of Noise-Induced Extinction in the Ricker Model with Delay and Allee Effect. Bashkirtseva I; Ryashko L Bull Math Biol; 2018 Jun; 80(6):1596-1614. PubMed ID: 29611109 [TBL] [Abstract][Full Text] [Related]
5. Analysis of stochastic dynamics in a multistable logistic-type epidemiological model. Bashkirtseva I; Ryashko L Eur Phys J Spec Top; 2022; 231(18-20):3563-3575. PubMed ID: 35729926 [TBL] [Abstract][Full Text] [Related]
6. Chaotic attractors that exist only in fractional-order case. Matouk AE J Adv Res; 2023 Mar; 45():183-192. PubMed ID: 36849217 [TBL] [Abstract][Full Text] [Related]
7. Analysis of noise-induced transitions from regular to chaotic oscillations in the Chen system. Bashkirtseva I; Chen G; Ryashko L Chaos; 2012 Sep; 22(3):033104. PubMed ID: 23020443 [TBL] [Abstract][Full Text] [Related]
8. Chaos, periodic structures, and multistability: Complex dynamical behaviors of an eco-epidemiological model in parameter planes. Garai S; Hossain M; Karmakar S; Pal N Chaos; 2023 Aug; 33(8):. PubMed ID: 37549122 [TBL] [Abstract][Full Text] [Related]
9. Fractal snapshot components in chaos induced by strong noise. Bódai T; Károlyi G; Tél T Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046201. PubMed ID: 21599264 [TBL] [Abstract][Full Text] [Related]
10. Crisis-induced intermittency in two coupled chaotic maps: towards understanding chaotic itinerancy. Tanaka G; Sanjuán MA; Aihara K Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016219. PubMed ID: 15697710 [TBL] [Abstract][Full Text] [Related]
11. Is there chaos in the brain? II. Experimental evidence and related models. Korn H; Faure P C R Biol; 2003 Sep; 326(9):787-840. PubMed ID: 14694754 [TBL] [Abstract][Full Text] [Related]
12. Parameter Identification of Fractional-Order Discrete Chaotic Systems. Peng Y; Sun K; He S; Peng D Entropy (Basel); 2019 Jan; 21(1):. PubMed ID: 33266743 [TBL] [Abstract][Full Text] [Related]
13. Stochastic multiresonance in a chaotic map with fractal basins of attraction. Matyjaśkiewicz S; Krawiecki A; Holyst JA; Kacperski K; Ebeling W Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):026215. PubMed ID: 11308566 [TBL] [Abstract][Full Text] [Related]
14. Noise-induced complex oscillatory dynamics in the Zeldovich-Semenov model of a continuous stirred tank reactor. Ryashko L Chaos; 2021 Jan; 31(1):013105. PubMed ID: 33754765 [TBL] [Abstract][Full Text] [Related]
15. Mixed-coexistence of periodic orbits and chaotic attractors in an inertial neural system with a nonmonotonic activation function. Song ZG; Xu J; Zhen B Math Biosci Eng; 2019 Jul; 16(6):6406-6425. PubMed ID: 31698569 [TBL] [Abstract][Full Text] [Related]
16. Transient dynamics and multistability in two electrically interacting FitzHugh-Nagumo neurons. Santana L; da Silva RM; Albuquerque HA; Manchein C Chaos; 2021 May; 31(5):053107. PubMed ID: 34240942 [TBL] [Abstract][Full Text] [Related]
17. Unstable attractors induce perpetual synchronization and desynchronization. Timme M; Wolf F; Geisel T Chaos; 2003 Mar; 13(1):377-87. PubMed ID: 12675444 [TBL] [Abstract][Full Text] [Related]
18. Bistable chaos without symmetry in generalized synchronization. Guan S; Lai CH; Wei GW Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036209. PubMed ID: 15903548 [TBL] [Abstract][Full Text] [Related]
19. Rate processes in nonlinear optical dynamics with many attractors. Arecchi FT Chaos; 1991 Oct; 1(3):357-372. PubMed ID: 12779933 [TBL] [Abstract][Full Text] [Related]
20. Fuzzy Synchronization of Chaotic Systems with Hidden Attractors. Zaqueros-Martinez J; Rodriguez-Gomez G; Tlelo-Cuautle E; Orihuela-Espina F Entropy (Basel); 2023 Mar; 25(3):. PubMed ID: 36981383 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]