These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 37342391)

  • 21. A Fuzzy Analytic Hierarchy Process and Cooperative Game Theory Combined Multiple Mobile Robot Navigation Algorithm.
    Kim C; Won JS
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32429339
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Performance impact of mutation operators of a subpopulation-based genetic algorithm for multi-robot task allocation problems.
    Liu C; Kroll A
    Springerplus; 2016; 5(1):1361. PubMed ID: 27588254
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Real-time map building and navigation for autonomous robots in unknown environments.
    Oriolo G; Ulivi G; Vendittelli M
    IEEE Trans Syst Man Cybern B Cybern; 1998; 28(3):316-33. PubMed ID: 18255950
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D Exploration and Navigation with Optimal-RRT Planners for Ground Robots in Indoor Incidents.
    Pérez-Higueras N; Jardón A; Rodríguez Á; Balaguer C
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31906019
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Path Smoothing Techniques in Robot Navigation: State-of-the-Art, Current and Future Challenges.
    Ravankar A; Ravankar AA; Kobayashi Y; Hoshino Y; Peng CC
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30235894
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Representation granularity enables time-efficient autonomous exploration in large, complex worlds.
    Cao C; Zhu H; Ren Z; Choset H; Zhang J
    Sci Robot; 2023 Jul; 8(80):eadf0970. PubMed ID: 37467309
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cooperative path following control of multiple nonholonomic mobile robots.
    Cao KC; Jiang B; Yue D
    ISA Trans; 2017 Nov; 71(Pt 1):161-169. PubMed ID: 28709652
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiple-Target Homotopic Quasi-Complete Path Planning Method for Mobile Robot Using a Piecewise Linear Approach.
    Diaz-Arango G; Vazquez-Leal H; Hernandez-Martinez L; Jimenez-Fernandez VM; Heredia-Jimenez A; Ambrosio RC; Huerta-Chua J; De Cos-Cholula H; Hernandez-Mendez S
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32521754
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multi-Robot Exploration of Unknown Space Using Combined Meta-Heuristic Salp Swarm Algorithm and Deterministic Coordinated Multi-Robot Exploration.
    Romeh AE; Mirjalili S
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850750
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An End-to-End Deep Reinforcement Learning-Based Intelligent Agent Capable of Autonomous Exploration in Unknown Environments.
    Ramezani Dooraki A; Lee DJ
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30360397
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simultaneous Localization and Guidance of Two Underwater Hexapod Robots under Underwater Currents.
    Kim J
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991902
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exact and Heuristic Multi-Robot Dubins Coverage Path Planning for Known Environments.
    Li L; Shi D; Jin S; Yang S; Zhou C; Lian Y; Liu H
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904764
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cooperative Exploration and Networking While Preserving Collision Avoidance.
    Kim J
    IEEE Trans Cybern; 2017 Dec; 47(12):4038-4048. PubMed ID: 27514071
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Res-FLNet: human-robot interaction and collaboration for multi-modal sensing robot autonomous driving tasks based on learning control algorithm.
    Wang S
    Front Neurorobot; 2023; 17():1269105. PubMed ID: 37850153
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hitchhiking Robots: A Collaborative Approach for Efficient Multi-Robot Navigation in Indoor Environments.
    Ravankar A; Ravankar AA; Kobayashi Y; Emaru T
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28809803
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multi-robot task allocation in e-commerce RMFS based on deep reinforcement learning.
    Yuan R; Dou J; Li J; Wang W; Jiang Y
    Math Biosci Eng; 2023 Jan; 20(2):1903-1918. PubMed ID: 36899514
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient Coverage Path Planning for Mobile Disinfecting Robots Using Graph-Based Representation of Environment.
    Nasirian B; Mehrandezh M; Janabi-Sharifi F
    Front Robot AI; 2021; 8():624333. PubMed ID: 33791341
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multi-objective path planning for mobile robot with an improved artificial bee colony algorithm.
    Yu Z; Duan P; Meng L; Han Y; Ye F
    Math Biosci Eng; 2023 Jan; 20(2):2501-2529. PubMed ID: 36899544
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ontology based autonomous robot task processing framework.
    Ge Y; Zhang S; Cai Y; Lu T; Wang H; Hui X; Wang S
    Front Neurorobot; 2024; 18():1401075. PubMed ID: 38774519
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep Deterministic Policy Gradient-Based Autonomous Driving for Mobile Robots in Sparse Reward Environments.
    Park M; Lee SY; Hong JS; Kwon NK
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36559941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.