These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 37342465)
1. A novel visual brain-computer interfaces paradigm based on evoked related potentials evoked by weak and small number of stimuli. Xiao X; Gao R; Zhou X; Yi W; Xu F; Wang K; Xu M; Ming D Front Neurosci; 2023; 17():1178283. PubMed ID: 37342465 [TBL] [Abstract][Full Text] [Related]
2. A Brain-Computer Interface Based on Miniature-Event-Related Potentials Induced by Very Small Lateral Visual Stimuli. Xu M; Xiao X; Wang Y; Qi H; Jung TP; Ming D IEEE Trans Biomed Eng; 2018 May; 65(5):1166-1175. PubMed ID: 29683431 [TBL] [Abstract][Full Text] [Related]
3. Detection of fixation points using a small visual landmark for brain-computer interfaces. Zhou X; Xu M; Xiao X; Wang Y; Jung TP; Ming D J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34130268 [No Abstract] [Full Text] [Related]
4. Implementing a calibration-free SSVEP-based BCI system with 160 targets. Chen Y; Yang C; Ye X; Chen X; Wang Y; Gao X J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34134091 [No Abstract] [Full Text] [Related]
5. Spatial decoupling of targets and flashing stimuli for visual brain-computer interfaces. Waytowich NR; Krusienski DJ J Neural Eng; 2015 Jun; 12(3):036006. PubMed ID: 25875047 [TBL] [Abstract][Full Text] [Related]
6. How stimulation speed affects Event-Related Potentials and BCI performance. Höhne J; Tangermann M Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1802-5. PubMed ID: 23366261 [TBL] [Abstract][Full Text] [Related]
7. Exploring Combinations of Different Color and Facial Expression Stimuli for Gaze-Independent BCIs. Chen L; Jin J; Daly I; Zhang Y; Wang X; Cichocki A Front Comput Neurosci; 2016; 10():5. PubMed ID: 26858634 [TBL] [Abstract][Full Text] [Related]
8. A Multifocal SSVEPs-based Brain-Computer Interface with Less Calibration Time Tang J; Xu M; Liu Z; Meng J; Chen S; Ming D Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5975-5978. PubMed ID: 31947208 [TBL] [Abstract][Full Text] [Related]
9. A Spectrally-Dense Encoding Method for Designing a High-Speed SSVEP-BCI With 120 Stimuli. Chen X; Liu B; Wang Y; Gao X IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2764-2772. PubMed ID: 36136927 [TBL] [Abstract][Full Text] [Related]
10. Single stimulus location for two inputs: A combined brain-computer interface based on Steady-State Visual Evoked Potential (SSVEP). Wang L; Zhang Z; Han D; Zhang Z; Liu Z; Liu W Eur J Neurosci; 2021 Feb; 53(3):861-875. PubMed ID: 33128787 [TBL] [Abstract][Full Text] [Related]
11. A Novel c-VEP BCI Paradigm for Increasing the Number of Stimulus Targets Based on Grouping Modulation With Different Codes. Wei Q; Liu Y; Gao X; Wang Y; Yang C; Lu Z; Gong H IEEE Trans Neural Syst Rehabil Eng; 2018 Jun; 26(6):1178-1187. PubMed ID: 29877842 [TBL] [Abstract][Full Text] [Related]
12. Toward a hybrid brain-computer interface based on repetitive visual stimuli with missing events. Wu Y; Li M; Wang J J Neuroeng Rehabil; 2016 Jul; 13(1):66. PubMed ID: 27460070 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous multiple-stimulus auditory brain-computer interface with semi-supervised learning and prior probability distribution tuning. Ogino M; Hamada N; Mitsukura Y J Neural Eng; 2022 Nov; 19(6):. PubMed ID: 36317357 [No Abstract] [Full Text] [Related]
14. Beyond maximum speed--a novel two-stimulus paradigm for brain-computer interfaces based on event-related potentials (P300-BCI). Kaufmann T; Kübler A J Neural Eng; 2014 Oct; 11(5):056004. PubMed ID: 25080406 [TBL] [Abstract][Full Text] [Related]
15. Influence of spatial frequency in visual stimuli for cVEP-based BCIs: evaluation of performance and user experience. Fernández-Rodríguez Á; Martínez-Cagigal V; Santamaría-Vázquez E; Ron-Angevin R; Hornero R Front Hum Neurosci; 2023; 17():1288438. PubMed ID: 38021231 [TBL] [Abstract][Full Text] [Related]
16. Effects of stimulus position on the classification of miniature asymmetric VEPs for brain-computer interfaces. Xu M; Zhou X; Xiao X; Wang Y; Jung TP; Ming D Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5956-5959. PubMed ID: 31947204 [TBL] [Abstract][Full Text] [Related]
17. A brain-computer interface based on high-frequency steady-state asymmetric visual evoked potentials Yue L; Xiao X; Xu M; Chen L; Wang Y; Jung TP; Ming D Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3090-3093. PubMed ID: 33018658 [TBL] [Abstract][Full Text] [Related]
18. Implementing Over 100 Command Codes for a High-Speed Hybrid Brain-Computer Interface Using Concurrent P300 and SSVEP Features. Xu M; Han J; Wang Y; Jung TP; Ming D IEEE Trans Biomed Eng; 2020 Nov; 67(11):3073-3082. PubMed ID: 32149621 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of Different Visual Feedback Methods for Brain-Computer Interfaces (BCI) Based on Code-Modulated Visual Evoked Potentials (cVEP). Fodor MA; Herschel H; Cantürk A; Heisenberg G; Volosyak I Brain Sci; 2024 Aug; 14(8):. PubMed ID: 39199537 [TBL] [Abstract][Full Text] [Related]
20. Optimizing spatial properties of a new checkerboard-like visual stimulus for user-friendly SSVEP-based BCIs. Ming G; Pei W; Chen H; Gao X; Wang Y J Neural Eng; 2021 Oct; 18(5):. PubMed ID: 34544060 [No Abstract] [Full Text] [Related] [Next] [New Search]