These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 37342671)
21. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction. Han Y; Kim D BMC Bioinformatics; 2017 Dec; 18(1):585. PubMed ID: 29281985 [TBL] [Abstract][Full Text] [Related]
22. Confounder balancing in adversarial domain adaptation for pre-trained large models fine-tuning. Jiang S; Chen Q; Xiang Y; Pan Y; Wu X; Lin Y Neural Netw; 2024 May; 173():106173. PubMed ID: 38387200 [TBL] [Abstract][Full Text] [Related]
23. Trans-Allelic Model for Prediction of Peptide:MHC-II Interactions. Degoot AM; Chirove F; Ndifon W Front Immunol; 2018; 9():1410. PubMed ID: 29988560 [TBL] [Abstract][Full Text] [Related]
24. Sliding Window INteraction Grammar (SWING): a generalized interaction language model for peptide and protein interactions. Omelchenko AA; Siwek JC; Chhibbar P; Arshad S; Nazarali I; Nazarali K; Rosengart A; Rahimikollu J; Tilstra J; Shlomchik MJ; Koes DR; Joglekar AV; Das J bioRxiv; 2024 May; ():. PubMed ID: 38746274 [TBL] [Abstract][Full Text] [Related]
25. Towards universal structure-based prediction of class II MHC epitopes for diverse allotypes. Bordner AJ PLoS One; 2010 Dec; 5(12):e14383. PubMed ID: 21187956 [TBL] [Abstract][Full Text] [Related]
26. S-PLM: Structure-aware Protein Language Model via Contrastive Learning between Sequence and Structure. Wang D; Pourmirzaei M; Abbas UL; Zeng S; Manshour N; Esmaili F; Poudel B; Jiang Y; Shao Q; Chen J; Xu D bioRxiv; 2024 May; ():. PubMed ID: 37609352 [TBL] [Abstract][Full Text] [Related]
27. Systematically benchmarking peptide-MHC binding predictors: From synthetic to naturally processed epitopes. Zhao W; Sher X PLoS Comput Biol; 2018 Nov; 14(11):e1006457. PubMed ID: 30408041 [TBL] [Abstract][Full Text] [Related]
28. Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification. Andreatta M; Karosiene E; Rasmussen M; Stryhn A; Buus S; Nielsen M Immunogenetics; 2015 Nov; 67(11-12):641-50. PubMed ID: 26416257 [TBL] [Abstract][Full Text] [Related]
29. Ab-initio conformational epitope structure prediction using genetic algorithm and SVM for vaccine design. Moghram BA; Nabil E; Badr A Comput Methods Programs Biomed; 2018 Jan; 153():161-170. PubMed ID: 29157448 [TBL] [Abstract][Full Text] [Related]
30. NCSP-PLM: An ensemble learning framework for predicting non-classical secreted proteins based on protein language models and deep learning. Liu T; Song C; Wang C Math Biosci Eng; 2024 Jan; 21(1):1472-1488. PubMed ID: 38303473 [TBL] [Abstract][Full Text] [Related]
31. MHC2SKpan: a novel kernel based approach for pan-specific MHC class II peptide binding prediction. Guo L; Luo C; Zhu S BMC Genomics; 2013; 14 Suppl 5(Suppl 5):S11. PubMed ID: 24564280 [TBL] [Abstract][Full Text] [Related]
32. Protein language-model embeddings for fast, accurate, and alignment-free protein structure prediction. Weissenow K; Heinzinger M; Rost B Structure; 2022 Aug; 30(8):1169-1177.e4. PubMed ID: 35609601 [TBL] [Abstract][Full Text] [Related]
33. MHC2AffyPred: A machine-learning approach to estimate affinity of MHC class II peptides based on structural interaction fingerprints. Jani SP; Kumar SP; Mangukia N; Patel SK; Pandya HA; Rawal RM Proteins; 2023 Feb; 91(2):277-289. PubMed ID: 36116110 [TBL] [Abstract][Full Text] [Related]
34. A simple method to predict protein-binding from aligned sequences--application to MHC superfamily and beta2-microglobulin. Duprat E; Lefranc MP; Gascuel O Bioinformatics; 2006 Feb; 22(4):453-9. PubMed ID: 16352655 [TBL] [Abstract][Full Text] [Related]
35. MaTPIP: A deep-learning architecture with eXplainable AI for sequence-driven, feature mixed protein-protein interaction prediction. Ghosh S; Mitra P Comput Methods Programs Biomed; 2024 Feb; 244():107955. PubMed ID: 38064959 [TBL] [Abstract][Full Text] [Related]
36. TLimmuno2: predicting MHC class II antigen immunogenicity through transfer learning. Wang G; Wu T; Ning W; Diao K; Sun X; Wang J; Wu C; Chen J; Xu D; Liu XS Brief Bioinform; 2023 May; 24(3):. PubMed ID: 36960769 [TBL] [Abstract][Full Text] [Related]
37. SumoPred-PLM: human SUMOylation and SUMO2/3 sites Prediction using Pre-trained Protein Language Model. Palacios AV; Acharya P; Peidl AS; Beck MR; Blanco E; Mishra A; Bawa-Khalfe T; Pakhrin SC NAR Genom Bioinform; 2024 Mar; 6(1):lqae011. PubMed ID: 38327870 [TBL] [Abstract][Full Text] [Related]
38. Structural properties of MHC class II ligands, implications for the prediction of MHC class II epitopes. Jørgensen KW; Buus S; Nielsen M PLoS One; 2010 Dec; 5(12):e15877. PubMed ID: 21209859 [TBL] [Abstract][Full Text] [Related]
39. Combining handcrafted features with latent variables in machine learning for prediction of radiation-induced lung damage. Cui S; Luo Y; Tseng HH; Ten Haken RK; El Naqa I Med Phys; 2019 May; 46(5):2497-2511. PubMed ID: 30891794 [TBL] [Abstract][Full Text] [Related]
40. POPI: predicting immunogenicity of MHC class I binding peptides by mining informative physicochemical properties. Tung CW; Ho SY Bioinformatics; 2007 Apr; 23(8):942-9. PubMed ID: 17384427 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]