These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 3734282)
1. A study of oak-pollen production and phenology in northern California: prediction of annual variation in pollen counts based on geographic and meterologic factors. Fairley D; Batchelder GL J Allergy Clin Immunol; 1986 Aug; 78(2):300-7. PubMed ID: 3734282 [TBL] [Abstract][Full Text] [Related]
2. Prediction of annual variations in atmospheric concentrations of grass pollen. A method based on meteorological factors and grain crop estimates. Subiza J; Masiello JM; Subiza JL; Jerez M; Hinojosa M; Subiza E Clin Exp Allergy; 1992 May; 22(5):540-6. PubMed ID: 1628252 [TBL] [Abstract][Full Text] [Related]
3. Oak pollen seasonality and severity across Europe and modelling the season start using a generalized phenological model. Grundström M; Adams-Groom B; Pashley CH; Dahl Å; Rasmussen K; de Weger LA; Thibaudon M; Fernández-Rodríguez S; Silva-Palacios I; Skjøth CA Sci Total Environ; 2019 May; 663():527-536. PubMed ID: 30716644 [TBL] [Abstract][Full Text] [Related]
4. Long-term trends and influence of climate and land-use changes on pollen profiles of a Mediterranean oak forest. López-Orozco R; García-Mozo H; Oteros J; Galán C Sci Total Environ; 2023 Nov; 897():165400. PubMed ID: 37423282 [TBL] [Abstract][Full Text] [Related]
5. A comparative, volumetric survey of airborne pollen in Philadelphia, Pennsylvania (1991-1997) and Cherry Hill, New Jersey (1995-1997). Dvorin DJ; Lee JJ; Belecanech GA; Goldstein MF; Dunsky EH Ann Allergy Asthma Immunol; 2001 Nov; 87(5):394-404. PubMed ID: 11730182 [TBL] [Abstract][Full Text] [Related]
6. Climate change effect on Betula (birch) and Quercus (oak) pollen seasons in the United States. Zhang Y; Bielory L; Georgopoulos PG Int J Biometeorol; 2014 Jul; 58(5):909-19. PubMed ID: 23793955 [TBL] [Abstract][Full Text] [Related]
7. Flower phenology as a disruptor of the fruiting dynamics in temperate oak species. Schermer É; Bel-Venner MC; Gaillard JM; Dray S; Boulanger V; Le Roncé I; Oliver G; Chuine I; Delzon S; Venner S New Phytol; 2020 Feb; 225(3):1181-1192. PubMed ID: 31569273 [TBL] [Abstract][Full Text] [Related]
8. Landscape genetics and population structure in Valley Oak (Quercus lobata Née). Ashley MV; Abraham ST; Backs JR; Koenig WD Am J Bot; 2015 Dec; 102(12):2124-31. PubMed ID: 26672009 [TBL] [Abstract][Full Text] [Related]
9. Variations in Grewling L; Jackowiak B; Smith M Aerobiologia (Bologna); 2014; 30(2):149-159. PubMed ID: 24817783 [TBL] [Abstract][Full Text] [Related]
10. Annual and intradiurnal variation of dominant airborne pollen and the effects of meteorological factors in Çeşme (Izmir, Turkey). Uguz U; Guvensen A; Tort NS Environ Monit Assess; 2017 Sep; 189(10):530. PubMed ID: 28965257 [TBL] [Abstract][Full Text] [Related]
11. Masting in wind-pollinated trees: system-specific roles of weather and pollination dynamics in driving seed production. Bogdziewicz M; Szymkowiak J; Kasprzyk I; Grewling Ł; Borowski Z; Borycka K; Kantorowicz W; Myszkowska D; Piotrowicz K; Ziemianin M; Pesendorfer MB Ecology; 2017 Oct; 98(10):2615-2625. PubMed ID: 28722149 [TBL] [Abstract][Full Text] [Related]
12. Long-term pollen trends and associations between pollen phenology and seasonal climate in Atlanta, Georgia (1992-2018). Manangan A; Brown C; Saha S; Bell J; Hess J; Uejio C; Fineman S; Schramm P Ann Allergy Asthma Immunol; 2021 Oct; 127(4):471-480.e4. PubMed ID: 34311074 [TBL] [Abstract][Full Text] [Related]
13. Drivers of synchrony of acorn production in the valley oak (Quercus lobata) at two spatial scales. Koenig WD; Knops JMH; Pesendorfer MB; Zaya DN; Ashley MV Ecology; 2017 Dec; 98(12):3056-3062. PubMed ID: 28881003 [TBL] [Abstract][Full Text] [Related]
14. Comparative long-term trend analysis of daily weather conditions with daily pollen concentrations in Brussels, Belgium. Bruffaerts N; De Smedt T; Delcloo A; Simons K; Hoebeke L; Verstraeten C; Van Nieuwenhuyse A; Packeu A; Hendrickx M Int J Biometeorol; 2018 Mar; 62(3):483-491. PubMed ID: 29064036 [TBL] [Abstract][Full Text] [Related]
15. Pollen limitation as a main driver of fruiting dynamics in oak populations. Schermer É; Bel-Venner MC; Fouchet D; Siberchicot A; Boulanger V; Caignard T; Thibaudon M; Oliver G; Nicolas M; Gaillard JM; Delzon S; Venner S Ecol Lett; 2019 Jan; 22(1):98-107. PubMed ID: 30324722 [TBL] [Abstract][Full Text] [Related]
16. The impact of weather and climate on pollen concentrations in Denver, Colorado, 2010-2018. Gross L; Weber R; Wolf M; Crooks JL Ann Allergy Asthma Immunol; 2019 Nov; 123(5):494-502.e4. PubMed ID: 31401104 [TBL] [Abstract][Full Text] [Related]
17. [Seasonal Dynamics of Airborne Pollens and Its Relationship with Meteorological Factors in Beijing Urban Area]. Meng L; Wang XK; Ouyang ZY; Ren YF; Wang QH Huan Jing Ke Xue; 2016 Feb; 37(2):452-8. PubMed ID: 27363130 [TBL] [Abstract][Full Text] [Related]
18. Relationship of NDVI and oak (Quercus) pollen including a predictive model in the SW Mediterranean region. González-Naharro R; Quirós E; Fernández-Rodríguez S; Silva-Palacios I; Maya-Manzano JM; Tormo-Molina R; Pecero-Casimiro R; Monroy-Colin A; Gonzalo-Garijo Á Sci Total Environ; 2019 Aug; 676():407-419. PubMed ID: 31048171 [TBL] [Abstract][Full Text] [Related]
19. Gene movement and genetic association with regional climate gradients in California valley oak (Quercus lobata Née) in the face of climate change. Sork VL; Davis FW; Westfall R; Flint A; Ikegami M; Wang H; Grivet D Mol Ecol; 2010 Sep; 19(17):3806-23. PubMed ID: 20723054 [TBL] [Abstract][Full Text] [Related]
20. Seasonal variations of airborne pollen in Allahabad, India. Sahney M; Chaurasia S Ann Agric Environ Med; 2008; 15(2):287-93. PubMed ID: 19061265 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]