These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 37342830)

  • 21. Coordination environment changes of the vanadium in vanadium-dependent haloperoxidase enzymes.
    McLauchlan CC; Murakami HA; Wallace CA; Crans DC
    J Inorg Biochem; 2018 Sep; 186():267-279. PubMed ID: 29990751
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploring the chemistry and biology of vanadium-dependent haloperoxidases.
    Winter JM; Moore BS
    J Biol Chem; 2009 Jul; 284(28):18577-81. PubMed ID: 19363038
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The chloride-activated peroxidation of catechol as a mechanistic probe of chloroperoxidase reactions. Competitive activation as evidence for a catalytic chloride binding site on compound I.
    Libby RD; Rotberg NS; Emerson JT; White TC; Yen GM; Friedman SH; Sun NS; Goldowski R
    J Biol Chem; 1989 Sep; 264(26):15284-92. PubMed ID: 2768264
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxidation reactions catalyzed by vanadium chloroperoxidase from Curvularia inaequalis.
    ten Brink HB; Dekker HL; Schoemaker HE; Wever R
    J Inorg Biochem; 2000 May; 80(1-2):91-8. PubMed ID: 10885468
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Peroxidase and phosphatase activity of active-site mutants of vanadium chloroperoxidase from the fungus Curvularia inaequalis. Implications for the catalytic mechanisms.
    Renirie R; Hemrika W; Wever R
    J Biol Chem; 2000 Apr; 275(16):11650-7. PubMed ID: 10766783
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insight into the catalytic mechanism of vanadium haloperoxidases. DFT investigation of vanadium cofactor reactivity.
    Zampella G; Fantucci P; Pecoraro VL; De Gioia L
    Inorg Chem; 2006 Sep; 45(18):7133-43. PubMed ID: 16933914
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The chloroperoxidase from the fungus Curvularia inaequalis; a novel vanadium enzyme.
    van Schijndel JW; Vollenbroek EG; Wever R
    Biochim Biophys Acta; 1993 Feb; 1161(2-3):249-56. PubMed ID: 8381670
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modification of halogen specificity of a vanadium-dependent bromoperoxidase.
    Ohshiro T; Littlechild J; Garcia-Rodriguez E; Isupov MN; Iida Y; Kobayashi T; Izumi Y
    Protein Sci; 2004 Jun; 13(6):1566-71. PubMed ID: 15133166
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isolation, characterization, and primary structure of the vanadium chloroperoxidase from the fungus Embellisia didymospora.
    Barnett P; Hemrika W; Dekker HL; Muijsers AO; Renirie R; Wever R
    J Biol Chem; 1998 Sep; 273(36):23381-7. PubMed ID: 9722573
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Second-Coordination Sphere Effect on the Reactivity of Vanadium-Peroxo Complexes: A Computational Study.
    Mubarak MQE; de Visser SP
    Inorg Chem; 2019 Dec; 58(23):15741-15750. PubMed ID: 31721569
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enzymatic Halogenases and Haloperoxidases: Computational Studies on Mechanism and Function.
    Timmins A; de Visser SP
    Adv Protein Chem Struct Biol; 2015; 100():113-51. PubMed ID: 26415843
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A density functional theory study of the mechanism of free radical generation in the system vanadate/PCA/H2O2.
    Khaliullin RZ; Bell AT; Head-Gordon M
    J Phys Chem B; 2005 Sep; 109(38):17984-92. PubMed ID: 16853308
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural investigation of the cofactor-free chloroperoxidases.
    Hofmann B; Tölzer S; Pelletier I; Altenbuchner J; van Pée KH; Hecht HJ
    J Mol Biol; 1998 Jun; 279(4):889-900. PubMed ID: 9642069
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enantioselective Sulfoxidation Catalyzed by Vanadium Haloperoxidases.
    ten Brink HB; Tuynman A; Dekker HL; Hemrika W; Izumi Y; Oshiro T; Schoemaker HE; Wever R
    Inorg Chem; 1998 Dec; 37(26):6780-6784. PubMed ID: 11670813
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Haloperoxidase-Catalyzed Luminol Luminescence.
    Allen RC
    Antioxidants (Basel); 2022 Mar; 11(3):. PubMed ID: 35326168
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural and Functional Insights into a Nonheme Iron- and α-Ketoglutarate-Dependent Halogenase That Catalyzes Chlorination of Nucleotide Substrates.
    Dai L; Zhang X; Hu Y; Shen J; Zhang Q; Zhang L; Min J; Chen CC; Liu Y; Huang JW; Guo RT
    Appl Environ Microbiol; 2022 May; 88(9):e0249721. PubMed ID: 35435717
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Active Site, Catalytic Cycle, and Iodination Reactions of Vanadium Iodoperoxidase: A Computational Study.
    Pacios LF; Gálvez O
    J Chem Theory Comput; 2010 May; 6(5):1738-52. PubMed ID: 26615703
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 'Thermodynamic' mechanism of catalysis by haloperoxidases.
    Shevelkova AN; Sal'nikov YI; Kuz'mina NL; Ryabov AD
    FEBS Lett; 1996 Apr; 383(3):259-63. PubMed ID: 8925909
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flavin Adenine Dinucleotide-Dependent Halogenase XanH and Engineering of Multifunctional Fusion Halogenases.
    Kong L; Wang Q; Deng Z; You D
    Appl Environ Microbiol; 2020 Sep; 86(18):. PubMed ID: 32651204
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synergistic Binding of the Halide and Cationic Prime Substrate of the l-Lysine 4-Chlorinase, BesD, in Both Ferrous and Ferryl States.
    Slater JW; Neugebauer ME; McBride MJ; Sil D; Lin CY; Katch BJ; Boal AK; Chang MCY; Silakov A; Krebs C; Bollinger JM
    bioRxiv; 2023 May; ():. PubMed ID: 37205437
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.