These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37342887)

  • 1. Three-stage hybrid neural beamformer for multi-channel speech enhancement.
    Kuang K; Yang F; Li J; Yang J
    J Acoust Soc Am; 2023 Jun; 153(6):3378. PubMed ID: 37342887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Joint Optimization of Deep Neural Network-Based Dereverberation and Beamforming for Sound Event Detection in Multi-Channel Environments.
    Noh K; Chang JH
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32231161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complex Spectral Mapping for Single- and Multi-Channel Speech Enhancement and Robust ASR.
    Wang ZQ; Wang P; Wang D
    IEEE/ACM Trans Audio Speech Lang Process; 2020; 28():1778-1787. PubMed ID: 33748326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of MVDR beamformer on a Speech Enhancement based Smartphone application for Hearing Aids.
    Shankar N; Kucuk A; Reddy CKA; Bhat GS; Panahi IMS
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():417-420. PubMed ID: 30440422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time dual-channel speech enhancement by VAD assisted MVDR beamformer for hearing aid applications using smartphone.
    Shankar N; Bhat GS; Panahi IMS
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():952-955. PubMed ID: 33018142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved Speech Spatial Covariance Matrix Estimation for Online Multi-Microphone Speech Enhancement.
    Kim M; Cheong S; Song H; Shin JW
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep neural network-based generalized sidelobe canceller for dual-channel far-field speech recognition.
    Li G; Liang S; Nie S; Liu W; Yang Z
    Neural Netw; 2021 Sep; 141():225-237. PubMed ID: 33930564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time single-channel deep neural network-based speech enhancement on edge devices.
    Shankar N; Bhat GS; Panahi IMS
    Interspeech; 2020 Oct; 2020():3281-3285. PubMed ID: 33898608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. End-to-End Deep Convolutional Recurrent Models for Noise Robust Waveform Speech Enhancement.
    Ullah R; Wuttisittikulkij L; Chaudhary S; Parnianifard A; Shah S; Ibrar M; Wahab FE
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Learning Based Binaural Speech Separation in Reverberant Environments.
    Zhang X; Wang D
    IEEE/ACM Trans Audio Speech Lang Process; 2017 May; 25(5):1075-1084. PubMed ID: 29057291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speech recognition with a hearing-aid processing scheme combining beamforming with mask-informed speech enhancement.
    Green T; Hilkhuysen G; Huckvale M; Rosen S; Brookes M; Moore A; Naylor P; Lightburn L; Xue W
    Trends Hear; 2022; 26():23312165211068629. PubMed ID: 34985356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implementation of the Digital QS-SVM-Based Beamformer on an FPGA Platform.
    Komeylian S; Paolini C
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Real-Time Dual-Microphone Speech Enhancement Algorithm Assisted by Bone Conduction Sensor.
    Zhou Y; Chen Y; Ma Y; Liu H
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32899533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive beamforming based on minimum variance (ABF-MV) using deep neural network for ultrafast ultrasound imaging.
    Wang W; He Q; Zhang Z; Feng Z
    Ultrasonics; 2022 Dec; 126():106823. PubMed ID: 35973332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Learning Based Target Cancellation for Speech Dereverberation.
    Wang ZQ; Wang D
    IEEE/ACM Trans Audio Speech Lang Process; 2020; 28():941-950. PubMed ID: 33748324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards real-world objective speech quality and intelligibility assessment using speech-enhancement residuals and convolutional long short-term memory networks.
    Dong X; Williamson DS
    J Acoust Soc Am; 2020 Nov; 148(5):3348. PubMed ID: 33261399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speech Enhancement by Multiple Propagation through the Same Neural Network.
    Grzywalski T; Drgas S
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Real-Time Convolutional Neural Network Based Speech Enhancement for Hearing Impaired Listeners Using Smartphone.
    Bhat GS; Shankar N; Reddy CKA; Panahi IMS
    IEEE Access; 2019; 7():78421-78433. PubMed ID: 32661495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning Complex Spectral Mapping with Gated Convolutional Recurrent Networks for Monaural Speech Enhancement.
    Tan K; Wang D
    IEEE/ACM Trans Audio Speech Lang Process; 2020; 28():380-390. PubMed ID: 33748323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Learning Based Real-time Speech Enhancement for Dual-microphone Mobile Phones.
    Tan K; Zhang X; Wang D
    IEEE/ACM Trans Audio Speech Lang Process; 2021; 29():1853-1863. PubMed ID: 34179221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.