These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37343209)

  • 21. Improved Photoresponse Characteristics of a ZnO-Based UV Photodetector by the Formation of an Amorphous SnO
    Yoo J; Jung U; Jung B; Shen W; Park J
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577331
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Trion-Inhibited Strong Excitonic Emission and Broadband Giant Photoresponsivity from Chemical Vapor-Deposited Monolayer MoS
    Paul KK; Mawlong LPL; Giri PK
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42812-42825. PubMed ID: 30421600
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Self-Powered Wavelength-Dependent Dual-Polarity Response Photodetector Based on CdS@PEDOT:PSS@Au Sandwich-Structured Core-Shell Nanorod Arrays.
    Zhang B; Zhai W; Wang J
    ACS Appl Mater Interfaces; 2023 Oct; 15(39):45970-45980. PubMed ID: 37733606
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optical Modulation of MoTe
    Zhou Y; Yang C; Fu X; Liu Y; Yang Y; Wu Y; Ge C; Min T; Zeng K; Li T
    ACS Appl Mater Interfaces; 2024 Mar; 16(10):13247-13257. PubMed ID: 38411594
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical investigations into polarization-induced self-powered GaN-based MSM photodetectors.
    Wang J; Chu C; Che J; Shao H; Zhang Y; Sun X; Zhang ZH; Li D
    Appl Opt; 2021 Dec; 60(35):10975-10983. PubMed ID: 35200860
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of a dual functional blocking layer for improvement of the responsivity in a self-powered UV photodetector based on TiO
    Zare A; Behaein S; Moradi M; Hosseini Z
    RSC Adv; 2022 Mar; 12(16):9909-9916. PubMed ID: 35424944
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toward High-Performance Electron/Hole-Transporting-Layer-Free, Self-Powered CsPbIBr
    Zhang Z; Zhang W; Jiang Q; Wei Z; Deng M; Chen D; Zhu W; Zhang J; You H
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):6607-6614. PubMed ID: 31927909
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-performance self-powered UV photodetectors based on TiO2 nano-branched arrays.
    Xie Y; Wei L; Li Q; Chen Y; Yan S; Jiao J; Liu G; Mei L
    Nanotechnology; 2014 Feb; 25(7):075202. PubMed ID: 24451997
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fast and High-Performance Self-Powered Photodetector Based on the ZnO/Metal-Organic Framework Heterojunction.
    Wang Y; Liu L; Shi Y; Li S; Sun F; Lu Q; Shen Y; Feng S; Qin S
    ACS Appl Mater Interfaces; 2023 Apr; 15(14):18236-18243. PubMed ID: 37000593
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single-Layer ZnO Hollow Hemispheres Enable High-Performance Self-Powered Perovskite Photodetector for Optical Communication.
    Pan X; Zhang J; Zhou H; Liu R; Wu D; Wang R; Shen L; Tao L; Zhang J; Wang H
    Nanomicro Lett; 2021 Feb; 13(1):70. PubMed ID: 34138321
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A self-powered UV photodetector based on TiO2 nanorod arrays.
    Xie Y; Wei L; Wei G; Li Q; Wang D; Chen Y; Yan S; Liu G; Mei L; Jiao J
    Nanoscale Res Lett; 2013 Apr; 8(1):188. PubMed ID: 23618012
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rutile Nanorod/Anatase Nanowire Junction Array as Both Sensor and Power Supplier for High-Performance, Self-Powered, Wireless UV Photodetector.
    Yu X; Zhao Z; Zhang J; Guo W; Qiu J; Li D; Li Z; Mou X; Li L; Li A; Liu H
    Small; 2016 May; 12(20):2759-67. PubMed ID: 27061816
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hybrid Device Architecture Using Plasmonic Nanoparticles, Graphene Quantum Dots, and Titanium Dioxide for UV Photodetectors.
    Kunwar S; Pandit S; Kulkarni R; Mandavkar R; Lin S; Li MY; Lee J
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):3408-3418. PubMed ID: 33399456
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Charge Separation in BaTiO
    Neige E; Schwab T; Musso M; Berger T; Bourret GR; Diwald O
    Small; 2023 Apr; 19(16):e2206805. PubMed ID: 36683239
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An Internal-Electrostatic-Field-Boosted Self-Powered Ultraviolet Photodetector.
    Yuan D; Wan L; Zhang H; Jiang J; Liu B; Li Y; Su Z; Zhai J
    Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36144988
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Atomic-Layer Deposition-Assisted Double-Side Interfacial Engineering for High-Performance Flexible and Stable CsPbBr
    Cen G; Liu Y; Zhao C; Wang G; Fu Y; Yan G; Yuan Y; Su C; Zhao Z; Mai W
    Small; 2019 Sep; 15(36):e1902135. PubMed ID: 31322829
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sensing of ultraviolet light: a transition from conventional to self-powered photodetector.
    Al Fattah MF; Khan AA; Anabestani H; Rana MM; Rassel S; Therrien J; Ban D
    Nanoscale; 2021 Oct; 13(37):15526-15551. PubMed ID: 34522938
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polymer dots grafted TiO
    Li G; Wang F; Liu P; Chen Z; Lei P; Xu Z; Li Z; Ding Y; Zhang S; Yang M
    Chemosphere; 2018 Apr; 197():526-534. PubMed ID: 29407814
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Doping controlled pyro-phototronic effect in self-powered zinc oxide photodetector for enhancement of photoresponse.
    Deka Boruah B; Naidu Majji S; Nandi S; Misra A
    Nanoscale; 2018 Feb; 10(7):3451-3459. PubMed ID: 29393951
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Boosting Photoresponse of Self-Powered InSe-Based Photoelectrochemical Photodetectors via Suppression of Interface Doping.
    Yang X; Liu X; Qu L; Gao F; Xu Y; Cui M; Yu H; Wang Y; Hu P; Feng W
    ACS Nano; 2022 May; 16(5):8440-8448. PubMed ID: 35435675
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.