These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 37343226)
1. Continuous chiral distances for two-dimensional lattices. Bright MJ; Cooper AI; Kurlin VA Chirality; 2023 Dec; 35(12):920-936. PubMed ID: 37343226 [TBL] [Abstract][Full Text] [Related]
2. Geographic style maps for two-dimensional lattices. Bright M; Cooper AI; Kurlin V Acta Crystallogr A Found Adv; 2023 Jan; 79(Pt 1):1-13. PubMed ID: 36601758 [TBL] [Abstract][Full Text] [Related]
3. Continuous Invariant-Based Maps of the Cambridge Structural Database. Widdowson DE; Kurlin VA Cryst Growth Des; 2024 Jul; 24(13):5627-5636. PubMed ID: 38983118 [TBL] [Abstract][Full Text] [Related]
4. Symmetry of semi-reduced lattices. Stróż K Acta Crystallogr A Found Adv; 2015 May; 71(Pt 3):268-78. PubMed ID: 25921495 [TBL] [Abstract][Full Text] [Related]
5. A space for lattice representation and clustering. Andrews LC; Bernstein HJ; Sauter NK Acta Crystallogr A Found Adv; 2019 May; 75(Pt 3):593-599. PubMed ID: 31041913 [TBL] [Abstract][Full Text] [Related]
6. Accurate lattice parameters from 2D-periodic images for subsequent Bravais lattice type assignments. Moeck P; DeStefano P Adv Struct Chem Imaging; 2018; 4(1):5. PubMed ID: 29607290 [TBL] [Abstract][Full Text] [Related]
7. Diophantine Approach to the Classification of Two-Dimensional Lattices: Surfaces of Face-Centered Cubic Materials. Jenkins SJ Langmuir; 2018 Apr; 34(13):4095-4106. PubMed ID: 29517235 [TBL] [Abstract][Full Text] [Related]
8. Chiral fermion reversal in chiral crystals. Li H; Xu S; Rao ZC; Zhou LQ; Wang ZJ; Zhou SM; Tian SJ; Gao SY; Li JJ; Huang YB; Lei HC; Weng HM; Sun YJ; Xia TL; Qian T; Ding H Nat Commun; 2019 Dec; 10(1):5505. PubMed ID: 31796737 [TBL] [Abstract][Full Text] [Related]
9. Partial order among the 14 Bravais types of lattices: basics and applications. Grimmer H Acta Crystallogr A Found Adv; 2015 Mar; 71(Pt 2):143-9. PubMed ID: 25727862 [TBL] [Abstract][Full Text] [Related]
10. The perceptual organization of dot lattices. Kubovy M Psychon Bull Rev; 1994 Jun; 1(2):182-90. PubMed ID: 24203469 [TBL] [Abstract][Full Text] [Related]
11. Discrete Lorentz symmetry and discrete spacetime translational symmetry in two- and three-dimensional crystals. Li X; Chai J; Zhu H; Wang P J Phys Condens Matter; 2020 Apr; 32(14):145402. PubMed ID: 31860882 [TBL] [Abstract][Full Text] [Related]
12. Chirality in the Solid State: Chiral Crystal Structures in Chiral and Achiral Space Groups. Fecher GH; Kübler J; Felser C Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079191 [TBL] [Abstract][Full Text] [Related]
13. Topological measures of order for imperfect two-dimensional Bravais lattices. Shipman PD; Sharath T; Bradley RM Phys Rev E; 2023 Apr; 107(4-1):044216. PubMed ID: 37198833 [TBL] [Abstract][Full Text] [Related]
14. Amplification of chirality in two-dimensional enantiomorphous lattices. Fasel R; Parschau M; Ernst KH Nature; 2006 Jan; 439(7075):449-52. PubMed ID: 16437111 [TBL] [Abstract][Full Text] [Related]
15. Hyperuniformity in two-dimensional periodic and quasiperiodic point patterns. Koga A; Sakai S Phys Rev E; 2024 Apr; 109(4-1):044103. PubMed ID: 38755916 [TBL] [Abstract][Full Text] [Related]
16. Chiral Ligand-Free, Optically Active Nanoparticles Inherently Composed of Chiral Lattices at the Atomic Scale. Yang L; Liu J; Sun P; Ni Z; Ma Y; Huang Z Small; 2020 Jun; 16(24):e2001473. PubMed ID: 32419372 [TBL] [Abstract][Full Text] [Related]
17. Micropolar continuum modelling of bi-dimensional tetrachiral lattices. Chen Y; Liu XN; Hu GK; Sun QP; Zheng QS Proc Math Phys Eng Sci; 2014 May; 470(2165):20130734. PubMed ID: 24808754 [TBL] [Abstract][Full Text] [Related]