BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 37343442)

  • 1. Assessing the economic and ecological viability of generating electricity from oil derived from pyrolysis of plastic waste in China.
    Cudjoe D; Brahim T; Zhu B
    Waste Manag; 2023 Aug; 168():354-365. PubMed ID: 37343442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Economic analysis of the circular economy based on waste plastic pyrolysis oil: a case of the university campus.
    Park H; Kim K; Yu M; Yun Z; Lee S
    Environ Dev Sustain; 2023 Mar; ():1-21. PubMed ID: 37363013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-pyrolysis of medical protective clothing and oil palm wastes for biofuel: Experimental, techno-economic, and environmental analyses.
    Su G; Zulkifli NWM; Ong HC; Ibrahim S; Cheah MY; Zhu R; Bu Q
    Energy (Oxf); 2023 Jun; 273():127221. PubMed ID: 36942281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production and utilization of pyrolysis oil from solidplastic wastes: A review on pyrolysis process and influence of reactors design.
    Sekar M; Ponnusamy VK; Pugazhendhi A; Nižetić S; Praveenkumar TR
    J Environ Manage; 2022 Jan; 302(Pt B):114046. PubMed ID: 34775338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyrolysis of mixed engineering plastics: Economic challenges for automotive plastic waste.
    Stallkamp C; Hennig M; Volk R; Stapf D; Schultmann F
    Waste Manag; 2024 Mar; 176():105-116. PubMed ID: 38277808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Aspen plus process simulation model for exploring the feasibility and profitability of pyrolysis process for plastic waste management.
    Hasan MM; Rasul MG; Jahirul MI; Sattar MA
    J Environ Manage; 2024 Mar; 355():120557. PubMed ID: 38460332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy Recovery and Economic Evaluation for Industrial Fuel from Plastic Waste.
    Galaly AR; Dawood N
    Polymers (Basel); 2023 May; 15(11):. PubMed ID: 37299232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the environmental sustainability of energy recovery from municipal solid waste in the UK.
    Jeswani HK; Azapagic A
    Waste Manag; 2016 Apr; 50():346-63. PubMed ID: 26906085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrolytic conversion of waste plastics to energy products: A review on yields, properties, and production costs.
    Faisal F; Rasul MG; Jahirul MI; Schaller D
    Sci Total Environ; 2023 Feb; 861():160721. PubMed ID: 36496020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Economic assessment of a 40,000 t/y mixed plastic waste pyrolysis plant using direct heat treatment with molten metal: A case study of a plant located in Belgium.
    Riedewald F; Patel Y; Wilson E; Santos S; Sousa-Gallagher M
    Waste Manag; 2021 Feb; 120():698-707. PubMed ID: 33191052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disposal of plastic mulching film through CO
    Jung JM; Cho SH; Jung S; Lin KA; Chen WH; Tsang YF; Kwon EE
    J Hazard Mater; 2022 May; 430():128454. PubMed ID: 35168100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW).
    Al-Salem SM; Antelava A; Constantinou A; Manos G; Dutta A
    J Environ Manage; 2017 Jul; 197():177-198. PubMed ID: 28384612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plastic waste management: A road map to achieve circular economy and recent innovations in pyrolysis.
    N S
    Sci Total Environ; 2022 Feb; 809():151160. PubMed ID: 34695478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyrolysis of polypropylene plastic waste into carbonaceous char: Priority of plastic waste management amidst COVID-19 pandemic.
    Harussani MM; Sapuan SM; Rashid U; Khalina A; Ilyas RA
    Sci Total Environ; 2022 Jan; 803():149911. PubMed ID: 34525745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrolysis: An effective technique for degradation of COVID-19 medical wastes.
    Dharmaraj S; Ashokkumar V; Pandiyan R; Halimatul Munawaroh HS; Chew KW; Chen WH; Ngamcharussrivichai C
    Chemosphere; 2021 Jul; 275():130092. PubMed ID: 33984908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abatement of hazardous materials and biomass waste via pyrolysis and co-pyrolysis for environmental sustainability and circular economy.
    Chew KW; Chia SR; Chia WY; Cheah WY; Munawaroh HSH; Ong WJ
    Environ Pollut; 2021 Jun; 278():116836. PubMed ID: 33689952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison assessment of landfill waste incineration and methane capture in the central region of Mexico.
    Pablo Emilio EG; Fernández-Rodríguez E; Carrasco-Hernández R; Coria-Páez AL; Gutiérrez-Galicia F
    Waste Manag Res; 2022 Dec; 40(12):1785-1793. PubMed ID: 35875950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Process Simulation and Life Cycle Assessment of Waste Plastics: A Comparison of Pyrolysis and Hydrocracking.
    Azam MU; Vete A; Afzal W
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36432185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in comparison with mechanical recycling and energy recovery.
    Jeswani H; Krüger C; Russ M; Horlacher M; Antony F; Hann S; Azapagic A
    Sci Total Environ; 2021 May; 769():144483. PubMed ID: 33486181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Processing plastic waste via pyrolysis-thermolysis into hydrogen and solid carbon additive to ethylene-vinyl acetate foam for cushioning applications.
    Wang Y; Chang BP; Veksha A; Kashcheev A; Tok ALY; Lipik V; Yoshiie R; Ueki Y; Naruse I; Lisak G
    J Hazard Mater; 2024 Feb; 464():132996. PubMed ID: 37988865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.