BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 37343442)

  • 21. Thermal degradation of waste plastics under non-sweeping atmosphere: Part 1: Effect of temperature, product optimization, and degradation mechanism.
    Singh RK; Ruj B; Sadhukhan AK; Gupta P
    J Environ Manage; 2019 Jun; 239():395-406. PubMed ID: 30928634
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synergistic effects of CO
    Kwon D; Jung S; Lin KA; Tsang YF; Park YK; Kwon EE
    J Hazard Mater; 2021 Oct; 419():126537. PubMed ID: 34323732
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Production of an alternative fuel by the co-pyrolysis of landfill recovered plastic wastes and used lubrication oils.
    Breyer S; Mekhitarian L; Rimez B; Haut B
    Waste Manag; 2017 Feb; 60():363-374. PubMed ID: 28063835
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quality protocol and procedure development to define end-of-waste criteria for tire pyrolysis oil in the framework of circular economy strategy.
    Antoniou NA; Zorpas AA
    Waste Manag; 2019 Jul; 95():161-170. PubMed ID: 31351601
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A review of microwave pyrolysis as a sustainable plastic waste management technique.
    Putra PHM; Rozali S; Patah MFA; Idris A
    J Environ Manage; 2022 Feb; 303():114240. PubMed ID: 34902653
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pyrolytic Conversion of Plastic Waste to Value-Added Products and Fuels: A Review.
    Papari S; Bamdad H; Berruti F
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34065677
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conversion of plastic waste into fuel oil using zeolite catalysts in a bench-scale pyrolysis reactor.
    Sivagami K; Kumar KV; Tamizhdurai P; Govindarajan D; Kumar M; Nambi I
    RSC Adv; 2022 Mar; 12(13):7612-7620. PubMed ID: 35424760
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plastic waste as pyrolysis feedstock for plastic oil production: A review.
    Chang SH
    Sci Total Environ; 2023 Jun; 877():162719. PubMed ID: 36933741
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Consequential life-cycle assessment of treatment options for repulping reject from liquid packaging board waste treatment.
    Khan MMH; Havukainen J; Niini A; Leminen V; Horttanainen M
    Waste Manag; 2023 Jan; 155():348-356. PubMed ID: 36423405
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Environmental impact assessment of converting flexible packaging plastic waste to pyrolysis oil and multi-walled carbon nanotubes.
    Ahamed A; Veksha A; Yin K; Weerachanchai P; Giannis A; Lisak G
    J Hazard Mater; 2020 May; 390():121449. PubMed ID: 31630860
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermochemical treatment of daily COVID-19 single-use facemask waste: Power generation potential and environmental impact analysis.
    Cudjoe D; Wang H; Zhu B
    Energy (Oxf); 2022 Jun; 249():123707. PubMed ID: 35295590
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Financial feasibility of waste to energy strategies in the United Arab Emirates.
    Abdallah M; Shanableh A; Shabib A; Adghim M
    Waste Manag; 2018 Dec; 82():207-219. PubMed ID: 30509583
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impervious and influence in the liquid fuel production from municipal plastic waste through thermo-chemical biomass conversion technologies - A review.
    Banu JR; Sharmila VG; Ushani U; Amudha V; Kumar G
    Sci Total Environ; 2020 May; 718():137287. PubMed ID: 32086085
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pyrolytic urban mining of waste printed circuit boards: an enviro-economic analysis.
    Debnath B; Pati S; Kayal S; De S; Chowdhury R
    Environ Sci Pollut Res Int; 2024 Jun; 31(30):42931-42947. PubMed ID: 38880846
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Harvesting marine plastic pollutants-derived renewable energy: A comprehensive review on applied energy and sustainable approach.
    Mallick K; Sahu A; Dubey NK; Das AP
    J Environ Manage; 2023 Dec; 348():119371. PubMed ID: 37925980
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Method development and evaluation of pyrolysis oils from mixed waste plastic by GC-VUV.
    Dunkle MN; Pijcke P; Winniford WL; Ruitenbeek M; Bellos G
    J Chromatogr A; 2021 Jan; 1637():461837. PubMed ID: 33383237
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In situ catalytic reforming of plastic pyrolysis vapors using MSW incineration ashes.
    Ahamed A; Liang L; Chan WP; Tan PCK; Yip NTX; Bobacka J; Veksha A; Yin K; Lisak G
    Environ Pollut; 2021 May; 276():116681. PubMed ID: 33611206
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The clean energy aspect of plastic waste - hydrogen gas production, CO
    Sudalaimuthu P; Sathyamurthy R
    Environ Sci Pollut Res Int; 2023 May; 30(25):66559-66584. PubMed ID: 37133666
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental investigation on slow thermal pyrolysis of real-world plastic wastes in a fixed bed reactor to obtain aromatic rich fuel grade liquid oil.
    Subhashini ; Mondal T
    J Environ Manage; 2023 Oct; 344():118680. PubMed ID: 37531671
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Global warming potential and economic performance of gasification-based chemical recycling and incineration pathways for residual municipal solid waste treatment in Germany.
    Voss R; Lee RP; Seidl L; Keller F; Fröhling M
    Waste Manag; 2021 Oct; 134():206-219. PubMed ID: 34454187
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.