BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 37343471)

  • 41. Equilibrium leaching of toxic elements from cement stabilized soil.
    Voglar GE; Leštan D
    J Hazard Mater; 2013 Feb; 246-247():18-25. PubMed ID: 23280050
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Stabilization of the As-contaminated soil from the metal mining areas in Korea.
    Ko MS; Kim JY; Bang S; Lee JS; Ko JI; Kim KW
    Environ Geochem Health; 2012 Jan; 34 Suppl 1():143-9. PubMed ID: 21826510
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Geoenvironmental properties of industrially contaminated site soil solidified/stabilized with a sustainable by-product-based binder.
    Feng YS; Du YJ; Zhou A; Zhang M; Li JS; Zhou SJ; Xia WY
    Sci Total Environ; 2021 Apr; 765():142778. PubMed ID: 33127139
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhancing road performance of lead-contaminated soil through biochar-cement solidification: An experimental study.
    Zou Z; Qin Y; Zhang T; Tan K
    J Environ Manage; 2023 Dec; 348():119315. PubMed ID: 37844401
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Green remediation of As and Pb contaminated soil using cement-free clay-based stabilization/solidification.
    Wang L; Cho DW; Tsang DCW; Cao X; Hou D; Shen Z; Alessi DS; Ok YS; Poon CS
    Environ Int; 2019 May; 126():336-345. PubMed ID: 30826612
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Immobilization of antimony waste slag by applying geopolymerization and stabilization/solidification technologies.
    Salihoglu G
    J Air Waste Manag Assoc; 2014 Nov; 64(11):1288-98. PubMed ID: 25509550
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Leaching of elements from cement activated fly ash and slag amended soils.
    Mahedi M; Cetin B
    Chemosphere; 2019 Nov; 235():565-574. PubMed ID: 31276869
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Stabilization of arsenic and antimony Co-contaminated soil with an iron-based stabilizer: Assessment of strength, leaching and hydraulic properties and immobilization mechanisms.
    Zhou S; Du Y; Feng Y; Sun H; Xia W; Yuan H
    Chemosphere; 2022 Aug; 301():134644. PubMed ID: 35452641
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanistic insights into red mud, blast furnace slag, or metakaolin-assisted stabilization/solidification of arsenic-contaminated sediment.
    Wang L; Chen L; Tsang DCW; Zhou Y; Rinklebe J; Song H; Kwon EE; Baek K; Sik Ok Y
    Environ Int; 2019 Dec; 133(Pt B):105247. PubMed ID: 31677577
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Efficient remediation of heavily As(III)-contaminated soil using a pre-oxidation and stabilization/solidification technique.
    Zhang W; Jiang M
    Chemosphere; 2022 Nov; 306():135598. PubMed ID: 35809746
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effects of long-term freezing-thawing on the strength properties and the chemical stability of compound solidified/stabilized lead-contaminated soil.
    Yang Z; Zhang K; Li X; Ren S; Li P
    Environ Sci Pollut Res Int; 2023 Mar; 30(13):38185-38201. PubMed ID: 36576635
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Solidified structure and leaching properties of metallurgical wastewater treatment sludge after solidification/stabilization process.
    Radovanović DĐ; Kamberović ŽJ; Korać MS; Rogan JR
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016; 51(1):34-43. PubMed ID: 26457922
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Study on Solidification and Stabilization of Antimony-Containing Tailings with Metallurgical Slag-Based Binders.
    Li Y; Ni W; Gao W; Zhang S; Fu P; Li Y
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35269012
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Solidification/Stabilization of Arsenic-Containing Tailings by Steel Slag-Based Binders with High Efficiency and Low Carbon Footprint.
    Gao W; Li Z; Zhang S; Zhang Y; Teng G; Li X; Ni W
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640259
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sustainable stabilization/solidification of the Pb, Zn, and Cd contaminated soil by red mud-derived binders.
    Wang F; Xu J; Yin H; Zhang Y; Pan H; Wang L
    Environ Pollut; 2021 Sep; 284():117178. PubMed ID: 33901985
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Treatment of PAH-contaminated soil using cement-activated persulfate.
    Ma F; Zhang Q; Wu B; Peng C; Li N; Li F; Gu Q
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):887-895. PubMed ID: 29067613
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Relating monolithic and granular leaching from contaminated soil treated with different cementitious binders.
    Kogbara RB; Al-Tabbaa A; Stegemann JA
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(12):1502-15. PubMed ID: 23802159
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cement based solidification/stabilization of arsenic-contaminated mine tailings.
    Choi WH; Lee SR; Park JY
    Waste Manag; 2009 May; 29(5):1766-71. PubMed ID: 19118995
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Assessment of effectiveness in stabilization/solidification of arsenic-contaminated soil: long-term leaching test and geophysical measurement.
    Lee SJ; Han MH; Ahn YT; Jeon BH; Choi J
    Environ Sci Pollut Res Int; 2023 Dec; 30(57):120472-120482. PubMed ID: 37943433
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Scoping candidate minerals for stabilization of arsenic-bearing solid residuals.
    Raghav M; Shan J; Sáez AE; Ela WP
    J Hazard Mater; 2013 Dec; 263 Pt 2(0 2):525-32. PubMed ID: 24231323
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.