These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 37343585)

  • 1. ULS4US: universal lesion segmentation framework for 2D ultrasound images.
    Wu X; Jiang Y; Xing H; Song W; Wu P; Cui XW; Xu G
    Phys Med Biol; 2023 Aug; 68(16):. PubMed ID: 37343585
    [No Abstract]   [Full Text] [Related]  

  • 2. SK-Unet++: An improved Unet++ network with adaptive receptive fields for automatic segmentation of ultrasound thyroid nodule images.
    Dai H; Xie W; Xia E
    Med Phys; 2024 Mar; 51(3):1798-1811. PubMed ID: 37606374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CARes-UNet: Content-aware residual UNet for lesion segmentation of COVID-19 from chest CT images.
    Xu X; Wen Y; Zhao L; Zhang Y; Zhao Y; Tang Z; Yang Z; Chen CY
    Med Phys; 2021 Nov; 48(11):7127-7140. PubMed ID: 34528263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BIRADS features-oriented semi-supervised deep learning for breast ultrasound computer-aided diagnosis.
    Zhang E; Seiler S; Chen M; Lu W; Gu X
    Phys Med Biol; 2020 Jun; 65(12):125005. PubMed ID: 32155605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Objective assessment of segmentation models for thyroid ultrasound images.
    Yadav N; Dass R; Virmani J
    J Ultrasound; 2023 Sep; 26(3):673-685. PubMed ID: 36195781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BPAT-UNet: Boundary preserving assembled transformer UNet for ultrasound thyroid nodule segmentation.
    Bi H; Cai C; Sun J; Jiang Y; Lu G; Shu H; Ni X
    Comput Methods Programs Biomed; 2023 Aug; 238():107614. PubMed ID: 37244233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semi-supervised segmentation of lesion from breast ultrasound images with attentional generative adversarial network.
    Han L; Huang Y; Dou H; Wang S; Ahamad S; Luo H; Liu Q; Fan J; Zhang J
    Comput Methods Programs Biomed; 2020 Jun; 189():105275. PubMed ID: 31978805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated 3D U-net based segmentation of neonatal cerebral ventricles from 3D ultrasound images.
    Szentimrey Z; de Ribaupierre S; Fenster A; Ukwatta E
    Med Phys; 2022 Feb; 49(2):1034-1046. PubMed ID: 34958147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An efficient framework for lesion segmentation in ultrasound images using global adversarial learning and region-invariant loss.
    Manh V; Jia X; Xue W; Xu W; Mei Z; Dong Y; Zhou J; Huang R; Ni D
    Comput Biol Med; 2024 Mar; 171():108137. PubMed ID: 38447499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Registration-guided deep learning image segmentation for cone beam CT-based online adaptive radiotherapy.
    Ma L; Chi W; Morgan HE; Lin MH; Chen M; Sher D; Moon D; Vo DT; Avkshtol V; Lu W; Gu X
    Med Phys; 2022 Aug; 49(8):5304-5316. PubMed ID: 35460584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate segmentation of breast tumor in ultrasound images through joint training and refined segmentation.
    Shen X; Wu X; Liu R; Li H; Yin J; Wang L; Ma H
    Phys Med Biol; 2022 Sep; 67(17):. PubMed ID: 35961304
    [No Abstract]   [Full Text] [Related]  

  • 12. A Comparative Study of Deep Learning Methods for Multi-Class Semantic Segmentation of 2D Kidney Ultrasound Images.
    Valente S; Morais P; Torres HR; Oliveira B; Buschle LR; Fritz A; Correia-Pinto J; Lima E; Vilaca JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient skin lesion segmentation using separable-Unet with stochastic weight averaging.
    Tang P; Liang Q; Yan X; Xiang S; Sun W; Zhang D; Coppola G
    Comput Methods Programs Biomed; 2019 Sep; 178():289-301. PubMed ID: 31416556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. W-Net: Dense and diagnostic semantic segmentation of subcutaneous and breast tissue in ultrasound images by incorporating ultrasound RF waveform data.
    Gare GR; Li J; Joshi R; Magar R; Vaze MP; Yousefpour M; Rodriguez RL; Galeotti JM
    Med Image Anal; 2022 Feb; 76():102326. PubMed ID: 34936967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic intraprostatic lesion segmentation in multiparametric magnetic resonance images with proposed multiple branch UNet.
    Chen Y; Xing L; Yu L; Bagshaw HP; Buyyounouski MK; Han B
    Med Phys; 2020 Dec; 47(12):6421-6429. PubMed ID: 33012016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing breast ultrasound segmentation through fine-tuning and optimization techniques: Sharp attention UNet.
    Khaledyan D; Marini TJ; M Baran T; O'Connell A; Parker K
    PLoS One; 2023; 18(12):e0289195. PubMed ID: 38091358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic renal lesion segmentation in ultrasound images based on saliency features, improved LBP, and an edge indicator under level set framework.
    Gui L; Yang X
    Med Phys; 2018 Jan; 45(1):223-235. PubMed ID: 29131363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images.
    Orlando N; Gillies DJ; Gyacskov I; Romagnoli C; D'Souza D; Fenster A
    Med Phys; 2020 Jun; 47(6):2413-2426. PubMed ID: 32166768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breast ultrasound image segmentation: A coarse-to-fine fusion convolutional neural network.
    Wang K; Liang S; Zhong S; Feng Q; Ning Z; Zhang Y
    Med Phys; 2021 Aug; 48(8):4262-4278. PubMed ID: 34053092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MR to ultrasound image registration with segmentation-based learning for HDR prostate brachytherapy.
    Chen Y; Xing L; Yu L; Liu W; Pooya Fahimian B; Niedermayr T; Bagshaw HP; Buyyounouski M; Han B
    Med Phys; 2021 Jun; 48(6):3074-3083. PubMed ID: 33905566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.