BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 37343658)

  • 1. A landing pad system for multicopy gene integration in Issatchenkia orientalis.
    Fatma Z; Tan SI; Boob AG; Zhao H
    Metab Eng; 2023 Jul; 78():200-208. PubMed ID: 37343658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The yeast platform engineered for synthetic gRNA-landing pads enables multiple gene integrations by a single gRNA/Cas9 system.
    Baek S; Utomo JC; Lee JY; Dalal K; Yoon YJ; Ro DK
    Metab Eng; 2021 Mar; 64():111-121. PubMed ID: 33549837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a CRISPR/Cas9-Based Tool for Gene Deletion in
    Tran VG; Cao M; Fatma Z; Song X; Zhao H
    mSphere; 2019 Jun; 4(3):. PubMed ID: 31243078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A genetic toolbox for metabolic engineering of Issatchenkia orientalis.
    Cao M; Fatma Z; Song X; Hsieh PH; Tran VG; Lyon WL; Sayadi M; Shao Z; Yoshikuni Y; Zhao H
    Metab Eng; 2020 May; 59():87-97. PubMed ID: 32007615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Highly Characterized Synthetic Landing Pad System for Precise Multicopy Gene Integration in Yeast.
    Bourgeois L; Pyne ME; Martin VJJ
    ACS Synth Biol; 2018 Nov; 7(11):2675-2685. PubMed ID: 30372609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction and evaluation of gRNA arrays for multiplex CRISPR-Cas9.
    Žun G; Doberšek K; Petrovič U
    Yeast; 2023 Jan; 40(1):32-41. PubMed ID: 36536407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Method for Multiplexed Integration of Synergistic Alleles and Metabolic Pathways in Yeasts via CRISPR-Cas9.
    Walter JM; Schubert MG; Kung SH; Hawkins K; Platt DM; Hernday AD; Mahatdejkul-Meadows T; Szeto W; Chandran SS; Newman JD; Horwitz AA
    Methods Mol Biol; 2019; 2049():39-72. PubMed ID: 31602604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of Cre-lox and CRISPR-Cas9 as tools for recycling of multiple-integrated selection markers in Saccharomyces cerevisiae.
    Moon HY; Sim GH; Kim HJ; Kim K; Kang HA
    J Microbiol; 2022 Jan; 60(1):18-30. PubMed ID: 34964942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome Editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 System.
    Wang S; Dong S; Wang P; Tao Y; Wang Y
    Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28258147
    [No Abstract]   [Full Text] [Related]  

  • 10. A novel Bxb1 integrase RMCE system for high fidelity site-specific integration of mAb expression cassette in CHO Cells.
    Inniss MC; Bandara K; Jusiak B; Lu TK; Weiss R; Wroblewska L; Zhang L
    Biotechnol Bioeng; 2017 Aug; 114(8):1837-1846. PubMed ID: 28186334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cas9-Based Metabolic Engineering of
    Lee YG; Kim C; Kuanyshev N; Kang NK; Fatma Z; Wu ZY; Cheng MH; Singh V; Yoshikuni Y; Zhao H; Jin YS
    J Agric Food Chem; 2022 Sep; 70(38):12085-12094. PubMed ID: 36103687
    [No Abstract]   [Full Text] [Related]  

  • 12. ACtivE: Assembly and CRISPR-Targeted
    Malcı K; Jonguitud-Borrego N; van der Straten Waillet H; Puodžiu Naitė U; Johnston EJ; Rosser SJ; Rios-Solis L
    ACS Synth Biol; 2022 Nov; 11(11):3629-3643. PubMed ID: 36252276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-copy genome integration of 2,3-butanediol biosynthesis pathway in Saccharomyces cerevisiae via in vivo DNA assembly and replicative CRISPR-Cas9 mediated delta integration.
    Huang S; Geng A
    J Biotechnol; 2020 Feb; 310():13-20. PubMed ID: 32006629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-COPIES: an in silico platform for discovery of neutral integration sites for CRISPR/Cas-facilitated gene integration.
    Boob AG; Zhu Z; Intasian P; Jain M; Petrov VA; Lane ST; Tan SI; Xun G; Zhao H
    Nucleic Acids Res; 2024 Apr; 52(6):e30. PubMed ID: 38346683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forced Recycling of an AMA1-Based Genome-Editing Plasmid Allows for Efficient Multiple Gene Deletion/Integration in the Industrial Filamentous Fungus
    Katayama T; Nakamura H; Zhang Y; Pascal A; Fujii W; Maruyama JI
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Simplified Method for CRISPR-Cas9 Engineering of Bacillus subtilis.
    Sachla AJ; Alfonso AJ; Helmann JD
    Microbiol Spectr; 2021 Oct; 9(2):e0075421. PubMed ID: 34523974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas12a Multiplex Genome Editing of Saccharomyces cerevisiae and the Creation of Yeast Pixel Art.
    Ciurkot K; Vonk B; Gorochowski TE; Roubos JA; Verwaal R
    J Vis Exp; 2019 May; (147):. PubMed ID: 31205318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-Cas9 Toolkit for Genome Editing in an Autotrophic CO
    Li J; Zhang L; Xu Q; Zhang W; Li Z; Chen L; Dong X
    Microbiol Spectr; 2022 Aug; 10(4):e0116522. PubMed ID: 35766512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.