These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 37343658)

  • 21. A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae.
    Shi S; Liang Y; Zhang MM; Ang EL; Zhao H
    Metab Eng; 2016 Jan; 33():19-27. PubMed ID: 26546089
    [TBL] [Abstract][Full Text] [Related]  

  • 22. EasyClone-MarkerFree: A vector toolkit for marker-less integration of genes into Saccharomyces cerevisiae via CRISPR-Cas9.
    Jessop-Fabre MM; Jakočiūnas T; Stovicek V; Dai Z; Jensen MK; Keasling JD; Borodina I
    Biotechnol J; 2016 Aug; 11(8):1110-7. PubMed ID: 27166612
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae.
    Ronda C; Maury J; Jakočiunas T; Jacobsen SA; Germann SM; Harrison SJ; Borodina I; Keasling JD; Jensen MK; Nielsen AT
    Microb Cell Fact; 2015 Jul; 14():97. PubMed ID: 26148499
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expanding the neutral sites for integrated gene expression in Saccharomyces cerevisiae.
    Kong S; Yu W; Gao N; Zhai X; Zhou YJ
    FEMS Microbiol Lett; 2022 Sep; 369(1):. PubMed ID: 35981819
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Delta Integration CRISPR-Cas (Di-CRISPR) in Saccharomyces cerevisiae.
    Shi S; Liang Y; Ang EL; Zhao H
    Methods Mol Biol; 2019; 1927():73-91. PubMed ID: 30788786
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bacterial genome editing by coupling Cre-lox and CRISPR-Cas9 systems.
    Liu H; Robinson DS; Wu ZY; Kuo R; Yoshikuni Y; Blaby IK; Cheng JF
    PLoS One; 2020; 15(11):e0241867. PubMed ID: 33147260
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiplexed CRISPR-Cas9-Based Genome Editing of
    Otoupal PB; Ito M; Arkin AP; Magnuson JK; Gladden JM; Skerker JM
    mSphere; 2019 Mar; 4(2):. PubMed ID: 30894433
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production.
    Li H; Shen CR; Huang CH; Sung LY; Wu MY; Hu YC
    Metab Eng; 2016 Nov; 38():293-302. PubMed ID: 27693320
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Single Cas9-VPR Nuclease for Simultaneous Gene Activation, Repression, and Editing in
    Dong C; Jiang L; Xu S; Huang L; Cai J; Lian J; Xu Z
    ACS Synth Biol; 2020 Sep; 9(9):2252-2257. PubMed ID: 32841560
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assembly and Multiplex Genome Integration of Metabolic Pathways in Yeast Using CasEMBLR.
    Jakočiūnas T; Jensen ED; Jensen MK; Keasling JD
    Methods Mol Biol; 2018; 1671():185-201. PubMed ID: 29170960
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae.
    Jakočiūnas T; Bonde I; Herrgård M; Harrison SJ; Kristensen M; Pedersen LE; Jensen MK; Keasling JD
    Metab Eng; 2015 Mar; 28():213-222. PubMed ID: 25638686
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae.
    Mans R; van Rossum HM; Wijsman M; Backx A; Kuijpers NG; van den Broek M; Daran-Lapujade P; Pronk JT; van Maris AJ; Daran JM
    FEMS Yeast Res; 2015 Mar; 15(2):. PubMed ID: 25743786
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A versatile toolbox for CRISPR-based genome engineering in Pichia pastoris.
    Liao X; Li L; Jameel A; Xing XH; Zhang C
    Appl Microbiol Biotechnol; 2021 Dec; 105(24):9211-9218. PubMed ID: 34773154
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CRISPR/Cas9-Enabled Multiplex Genome Editing and Its Application.
    Minkenberg B; Wheatley M; Yang Y
    Prog Mol Biol Transl Sci; 2017; 149():111-132. PubMed ID: 28712493
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simplified CRISPR-Cas genome editing for Saccharomyces cerevisiae.
    Generoso WC; Gottardi M; Oreb M; Boles E
    J Microbiol Methods; 2016 Aug; 127():203-205. PubMed ID: 27327211
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CRISPR-Cpf1-Assisted Multiplex Genome Editing and Transcriptional Repression in Streptomyces.
    Li L; Wei K; Zheng G; Liu X; Chen S; Jiang W; Lu Y
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 29980561
    [No Abstract]   [Full Text] [Related]  

  • 37. CRISPR-Cas9
    Song X; Huang H; Xiong Z; Ai L; Yang S
    Appl Environ Microbiol; 2017 Nov; 83(22):. PubMed ID: 28864652
    [No Abstract]   [Full Text] [Related]  

  • 38. A two-plasmid inducible CRISPR/Cas9 genome editing tool for Clostridium acetobutylicum.
    Wasels F; Jean-Marie J; Collas F; López-Contreras AM; Lopes Ferreira N
    J Microbiol Methods; 2017 Sep; 140():5-11. PubMed ID: 28610973
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wicket: A Versatile Tool for the Integration and Optimization of Exogenous Pathways in Saccharomyces cerevisiae.
    Hou S; Qin Q; Dai J
    ACS Synth Biol; 2018 Mar; 7(3):782-788. PubMed ID: 29474063
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production.
    Zhang J; Zong W; Hong W; Zhang ZT; Wang Y
    Metab Eng; 2018 May; 47():49-59. PubMed ID: 29530750
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.