BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 37343703)

  • 1. Ornithine is the central intermediate in the arginine degradative pathway and its regulation in Bacillus subtilis.
    Warneke R; Garbers TB; Herzberg C; Aschenbrandt G; Ficner R; Stülke J
    J Biol Chem; 2023 Jul; 299(7):104944. PubMed ID: 37343703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the transcriptional activator RocR in the arginine-degradation pathway of Bacillus subtilis.
    Gardan R; Rapoport G; Débarbouillé M
    Mol Microbiol; 1997 May; 24(4):825-37. PubMed ID: 9194709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RocR, a novel regulatory protein controlling arginine utilization in Bacillus subtilis, belongs to the NtrC/NifA family of transcriptional activators.
    Calogero S; Gardan R; Glaser P; Schweizer J; Rapoport G; Debarbouille M
    J Bacteriol; 1994 Mar; 176(5):1234-41. PubMed ID: 8113162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of the rocDEF operon involved in arginine catabolism in Bacillus subtilis.
    Gardan R; Rapoport G; Débarbouillé M
    J Mol Biol; 1995 Jun; 249(5):843-56. PubMed ID: 7540694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specificity of the interaction of RocR with the rocG-rocA intergenic region in Bacillus subtilis.
    Ali NO; Jeusset J; Larquet E; Le Cam E; Belitsky B; Sonenshein AL; Msadek T; Débarbouillé M
    Microbiology (Reading); 2003 Mar; 149(Pt 3):739-750. PubMed ID: 12634342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutational activation of the RocR activator and of a cryptic rocDEF promoter bypass loss of the initial steps of proline biosynthesis in Bacillus subtilis.
    Zaprasis A; Hoffmann T; Wünsche G; Flórez LA; Stülke J; Bremer E
    Environ Microbiol; 2014 Mar; 16(3):701-17. PubMed ID: 23869754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An enhancer element located downstream of the major glutamate dehydrogenase gene of Bacillus subtilis.
    Belitsky BR; Sonenshein AL
    Proc Natl Acad Sci U S A; 1999 Aug; 96(18):10290-5. PubMed ID: 10468601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arginine and Citrulline Catabolic Pathways Encoded by the
    Majsnerowska M; Noens EEE; Lolkema JS
    J Bacteriol; 2018 Jul; 200(14):. PubMed ID: 29712874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacillus subtilis 168 mutants resistant to arginine hydroxamate in the presence of ornithine or citrulline.
    Baumberg S; Mountain A
    J Gen Microbiol; 1984 May; 130(5):1247-52. PubMed ID: 6432946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arginine, citrulline and ornithine metabolism by lactic acid bacteria from wine.
    Arena ME; Saguir FM; Manca de Nadra MC
    Int J Food Microbiol; 1999 Nov; 52(3):155-61. PubMed ID: 10733246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental pH determines citrulline and ornithine release through the arginine deiminase pathway in Lactobacillus fermentum IMDO 130101.
    Vrancken G; Rimaux T; Weckx S; De Vuyst L; Leroy F
    Int J Food Microbiol; 2009 Nov; 135(3):216-22. PubMed ID: 19732985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An energy-conserving reaction in amino acid metabolism catalyzed by arginine synthetase.
    Michimori Y; Yokooji Y; Atomi H
    Proc Natl Acad Sci U S A; 2024 Apr; 121(16):e2401313121. PubMed ID: 38602916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arabidopsis chloroplasts dissimilate L-arginine and L-citrulline for use as N source.
    Ludwig RA
    Plant Physiol; 1993 Feb; 101(2):429-34. PubMed ID: 8278506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catabolism of arginine, citrulline and ornithine by Pseudomonas and related bacteria.
    Stalon V; Vander Wauven C; Momin P; Legrain C
    J Gen Microbiol; 1987 Sep; 133(9):2487-95. PubMed ID: 3129535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A putative transport protein is involved in citrulline excretion and re-uptake during arginine deiminase pathway activity by Lactobacillus sakei.
    Rimaux T; Rivière A; Hebert EM; Mozzi F; Weckx S; De Vuyst L; Leroy F
    Res Microbiol; 2013 Apr; 164(3):216-25. PubMed ID: 23178175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The small untranslated RNA SR1 from the Bacillus subtilis genome is involved in the regulation of arginine catabolism.
    Heidrich N; Chinali A; Gerth U; Brantl S
    Mol Microbiol; 2006 Oct; 62(2):520-36. PubMed ID: 17020585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of ethanol and low pH on citrulline and ornithine excretion and arc gene expression by strains of Lactobacillus brevis and Pediococcus pentosaceus.
    Araque I; Bordons A; Reguant C
    Food Microbiol; 2013 Feb; 33(1):107-13. PubMed ID: 23122508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of adenosine nucleotides in the regulation of a stress-response transcription factor in Bacillus subtilis.
    Alper S; Dufour A; Garsin DA; Duncan L; Losick R
    J Mol Biol; 1996 Jul; 260(2):165-77. PubMed ID: 8764398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymology of the pathway for ATP production by arginine breakdown.
    Pols T; Singh S; Deelman-Driessen C; Gaastra BF; Poolman B
    FEBS J; 2021 Jan; 288(1):293-309. PubMed ID: 32306469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CcpA-independent regulation of expression of the Mg2+ -citrate transporter gene citM by arginine metabolism in Bacillus subtilis.
    Warner JB; Magni C; Lolkema JS
    J Bacteriol; 2003 Feb; 185(3):854-9. PubMed ID: 12533460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.