These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 37343749)
1. Physico-chemical and extraction properties on alkali-treated Acacia pennata fiber. Sheeba KRJ; Alagarasan JK; Dharmaraja J; Kavitha SA; Shobana S; Arvindnarayan S; Vadivel M; Lee M; Retnam KP Environ Res; 2023 Sep; 233():116415. PubMed ID: 37343749 [TBL] [Abstract][Full Text] [Related]
2. Examining the physico-chemical, structural and thermo-mechanical properties of naturally occurring Acacia pennata fibres treated with KMnO Sheeba KRJ; Priya RK; Arunachalam KP; Shobana S; Avudaiappan S; Flores ES Sci Rep; 2023 Nov; 13(1):20643. PubMed ID: 38001118 [TBL] [Abstract][Full Text] [Related]
3. Characterization of raw and alkali treated new natural cellulosic fibers from Tridax procumbens. Vijay R; Lenin Singaravelu D; Vinod A; Sanjay MR; Siengchin S; Jawaid M; Khan A; Parameswaranpillai J Int J Biol Macromol; 2019 Mar; 125():99-108. PubMed ID: 30528990 [TBL] [Abstract][Full Text] [Related]
4. Extraction and characterization of a new natural cellulosic fiber from the Habara Plant Stem (HF) as potential reinforcement for polymer composites. Vijayakkannan K; Rajendran I Int J Biol Macromol; 2024 Jun; 269(Pt 1):131818. PubMed ID: 38670191 [TBL] [Abstract][Full Text] [Related]
5. Characterization of natural cellulosic fiber extracted from Grewia ferruginea plant stem. Birlie B; Mamay T Int J Biol Macromol; 2024 Jun; 271(Pt 2):132858. PubMed ID: 38845254 [TBL] [Abstract][Full Text] [Related]
6. Characterization of raw and alkali treated cellulosic Grewia Flavescens natural fiber. Tiwari YM; Sarangi SK Int J Biol Macromol; 2022 Jun; 209(Pt B):1933-1942. PubMed ID: 35489622 [TBL] [Abstract][Full Text] [Related]
7. Characterization of raw and alkali treated new natural cellulosic fiber from Coccinia grandis.L. Senthamaraikannan P; Kathiresan M Carbohydr Polym; 2018 Apr; 186():332-343. PubMed ID: 29455994 [TBL] [Abstract][Full Text] [Related]
8. Characterization of raw and alkali treated new natural cellulosic fibres extracted from the aerial roots of banyan tree. Ganapathy T; Sathiskumar R; Senthamaraikannan P; Saravanakumar SS; Khan A Int J Biol Macromol; 2019 Oct; 138():573-581. PubMed ID: 31348971 [TBL] [Abstract][Full Text] [Related]
9. Comprehensive characterization of raw and alkali (NaOH) treated natural fibers from Symphirema involucratum stem. Raju JSN; Depoures MV; Kumaran P Int J Biol Macromol; 2021 Sep; 186():886-896. PubMed ID: 34271053 [TBL] [Abstract][Full Text] [Related]
11. Characterization of alkali treated and untreated new cellulosic fiber from Saharan aloe vera cactus leaves. A N B; K J N Carbohydr Polym; 2017 Oct; 174():200-208. PubMed ID: 28821059 [TBL] [Abstract][Full Text] [Related]
12. Enhancement of tensile strength of lignocellulosic jute fibers by alkali-steam treatment. Saha P; Manna S; Chowdhury SR; Sen R; Roy D; Adhikari B Bioresour Technol; 2010 May; 101(9):3182-7. PubMed ID: 20074944 [TBL] [Abstract][Full Text] [Related]
13. Characterization of untreated and alkali treated new cellulosic fiber from an Areca palm leaf stalk as potential reinforcement in polymer composites. N S; I R; T R Carbohydr Polym; 2018 Sep; 195():566-575. PubMed ID: 29805013 [TBL] [Abstract][Full Text] [Related]
14. Optimizing the alkali treatment of cellulosic Himalayan nettle fibre for reinforcement in polymer composites. Mudoi MP; Sinha S; Parthasarthy V Carbohydr Polym; 2022 Nov; 296():119937. PubMed ID: 36087986 [TBL] [Abstract][Full Text] [Related]
15. Characterization of new natural cellulosic fiber from Lygeum spartum L. Belouadah Z; Ati A; Rokbi M Carbohydr Polym; 2015 Dec; 134():429-37. PubMed ID: 26428144 [TBL] [Abstract][Full Text] [Related]
16. Chemical Treatment of Waste Abaca for Natural Fiber-Reinforced Geopolymer Composite. Malenab RAJ; Ngo JPS; Promentilla MAB Materials (Basel); 2017 May; 10(6):. PubMed ID: 28772936 [TBL] [Abstract][Full Text] [Related]
17. Characterization of a novel natural cellulosic fiber from Calotropis gigantea fruit bunch for ecofriendly polymer composites. Narayanasamy P; Balasundar P; Senthil S; Sanjay MR; Siengchin S; Khan A; Asiri AM Int J Biol Macromol; 2020 May; 150():793-801. PubMed ID: 32068059 [TBL] [Abstract][Full Text] [Related]
18. Effect of chemical treatment of pineapple crown fiber in the production, chemical composition, crystalline structure, thermal stability and thermal degradation kinetic properties of cellulosic materials. Pereira PHF; Ornaghi HL; Arantes V; Cioffi MOH Carbohydr Res; 2021 Jan; 499():108227. PubMed ID: 33388571 [TBL] [Abstract][Full Text] [Related]
19. Extraction and characterization of a novel cellulosic fiber derived from the bark of Rosa hybrida plant. Shibly MAH; Islam MI; Rahat MNH; Billah MM; Rahman MM; Bashar MS; Abdul B; Alorfi HS Int J Biol Macromol; 2024 Feb; 257(Pt 1):128446. PubMed ID: 38029899 [TBL] [Abstract][Full Text] [Related]
20. Thermoset phenolic matrices reinforced with unmodified and surface-grafted furfuryl alcohol sugar cane bagasse and curaua fibers: properties of fibers and composites. Trindade WG; Hoareau W; Megiatto JD; Razera IA; Castellan A; Frollini E Biomacromolecules; 2005; 6(5):2485-96. PubMed ID: 16153084 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]