These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Artificial Human Sweat as a Novel Growth Condition for Clinically Relevant Pathogens on Hospital Surfaces. Watson F; Keevil CW; Chewins J; Wilks SA Microbiol Spectr; 2022 Apr; 10(2):e0213721. PubMed ID: 35357242 [TBL] [Abstract][Full Text] [Related]
3. Artificial dry surface biofilm models for testing the efficacy of cleaning and disinfection. Ledwoch K; Said J; Norville P; Maillard JY Lett Appl Microbiol; 2019 Apr; 68(4):329-336. PubMed ID: 30802983 [TBL] [Abstract][Full Text] [Related]
4. Biofilm formation and disinfectant resistance of Salmonella sp. in mono- and dual-species with Pseudomonas aeruginosa. Pang XY; Yang YS; Yuk HG J Appl Microbiol; 2017 Sep; 123(3):651-660. PubMed ID: 28644912 [TBL] [Abstract][Full Text] [Related]
5. A new dry-surface biofilm model: An essential tool for efficacy testing of hospital surface decontamination procedures. Almatroudi A; Hu H; Deva A; Gosbell IB; Jacombs A; Jensen SO; Whiteley G; Glasbey T; Vickery K J Microbiol Methods; 2015 Oct; 117():171-6. PubMed ID: 26260119 [TBL] [Abstract][Full Text] [Related]
6. Biofilm contamination of high-touched surfaces in intensive care units: epidemiology and potential impacts. Costa DM; Johani K; Melo DS; Lopes LKO; Lopes Lima LKO; Tipple AFV; Hu H; Vickery K Lett Appl Microbiol; 2019 Apr; 68(4):269-276. PubMed ID: 30758060 [TBL] [Abstract][Full Text] [Related]
7. A rapid model for developing dry surface biofilms of Staphylococcus aureus and Pseudomonas aeruginosa for in vitro disinfectant efficacy testing. Nkemngong CA; Voorn MG; Li X; Teska PJ; Oliver HF Antimicrob Resist Infect Control; 2020 Aug; 9(1):134. PubMed ID: 32807240 [TBL] [Abstract][Full Text] [Related]
8. Hydrogen peroxide and sodium hypochlorite disinfectants are more effective against Lineback CB; Nkemngong CA; Wu ST; Li X; Teska PJ; Oliver HF Antimicrob Resist Infect Control; 2018; 7():154. PubMed ID: 30568790 [TBL] [Abstract][Full Text] [Related]
9. An automated contact model for transmission of dry surface biofilms of Acinetobacter baumannii in healthcare. Watson F; Chewins J; Wilks S; Keevil B J Hosp Infect; 2023 Nov; 141():175-183. PubMed ID: 37348564 [TBL] [Abstract][Full Text] [Related]
10. Effect of disinfectant formulation and organic soil on the efficacy of oxidizing disinfectants against biofilms. Chowdhury D; Rahman A; Hu H; Jensen SO; Deva AK; Vickery K J Hosp Infect; 2019 Sep; 103(1):e33-e41. PubMed ID: 30391488 [TBL] [Abstract][Full Text] [Related]
11. Antimicrobial activity and effectiveness of a combination of sodium hypochlorite and hydrogen peroxide in killing and removing Pseudomonas aeruginosa biofilms from surfaces. DeQueiroz GA; Day DF J Appl Microbiol; 2007 Oct; 103(4):794-802. PubMed ID: 17897181 [TBL] [Abstract][Full Text] [Related]
12. Bacteriophage Treatment before Chemical Disinfection Can Enhance Removal of Plastic-Surface-Associated Pseudomonas aeruginosa. Stachler E; Kull A; Julian TR Appl Environ Microbiol; 2021 Sep; 87(20):e0098021. PubMed ID: 34347517 [TBL] [Abstract][Full Text] [Related]
13. The effects of disinfectant foam on microbial biofilms. Sreenivasan PK; Chorny RC Biofouling; 2005; 21(2):141-9. PubMed ID: 16167393 [TBL] [Abstract][Full Text] [Related]
14. Disinfectant test against monoculture and mixed-culture biofilms composed of technological, spoilage and pathogenic bacteria: bactericidal effect of essential oil and hydrosol of Satureja thymbra and comparison with standard acid-base sanitizers. Chorianopoulos NG; Giaouris ED; Skandamis PN; Haroutounian SA; Nychas GJ J Appl Microbiol; 2008 Jun; 104(6):1586-96. PubMed ID: 18217930 [TBL] [Abstract][Full Text] [Related]
15. Chlorine and Monochloramine Disinfection of Buse HY; J Morris B; Struewing IT; Szabo JG Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683743 [TBL] [Abstract][Full Text] [Related]
16. Comparative testing of disinfectant efficacy on planktonic bacteria and bacterial biofilms using a new assay based on kinetic analysis of metabolic activity. Günther F; Scherrer M; Kaiser SJ; DeRosa A; Mutters NT J Appl Microbiol; 2017 Mar; 122(3):625-633. PubMed ID: 27868317 [TBL] [Abstract][Full Text] [Related]
17. A model system for evaluating surface disinfection in dairy factory environments. Knight GC; Craven HM Int J Food Microbiol; 2010 Feb; 137(2-3):161-7. PubMed ID: 20022125 [TBL] [Abstract][Full Text] [Related]
18. Behavior of Listeria monocytogenes in a multi-species biofilm with Enterococcus faecalis and Enterococcus faecium and control through sanitation procedures. da Silva Fernandes M; Kabuki DY; Kuaye AY Int J Food Microbiol; 2015 May; 200():5-12. PubMed ID: 25655573 [TBL] [Abstract][Full Text] [Related]
19. Impact of material properties in determining quaternary ammonium compound adsorption and wipe product efficacy against biofilms. Pascoe MJ; Mandal S; Williams OA; Maillard JY J Hosp Infect; 2022 Aug; 126():37-43. PubMed ID: 35427722 [TBL] [Abstract][Full Text] [Related]
20. Dual species dry surface biofilms; Bacillus species impact on Staphylococcus aureus survival and surface disinfection. Centeleghe I; Norville P; Hughes L; Maillard JY J Appl Microbiol; 2022 Aug; 133(2):1130-1140. PubMed ID: 35543339 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]