These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37343798)

  • 1. Valorization of millet agro-residues for bioenergy production through pyrolysis: Recent inroads, technological bottlenecks, possible remedies, and future directions.
    Tagade A; Sawarkar AN
    Bioresour Technol; 2023 Sep; 384():129335. PubMed ID: 37343798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal stability of extracted lignin from novel millet husk crop residue.
    Gairola S; Sinha S; Singh I
    Int J Biol Macromol; 2023 Jul; 242(Pt 1):124725. PubMed ID: 37148941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Life-cycle assessment of pyrolysis processes for sustainable production of biochar from agro-residues.
    Zhu X; Labianca C; He M; Luo Z; Wu C; You S; Tsang DCW
    Bioresour Technol; 2022 Sep; 360():127601. PubMed ID: 35835419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic and thermodynamic study of finger millet straw pyrolysis through thermogravimetric analysis.
    Karuppasamy Vikraman V; Praveen Kumar D; Boopathi G; Subramanian P
    Bioresour Technol; 2021 Dec; 342():125992. PubMed ID: 34583115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and Functional Characteristics of miRNAs in Five Strategic Millet Species and Their Utility in Drought Tolerance.
    Chakraborty A; Viswanath A; Malipatil R; Rathore A; Thirunavukkarasu N
    Front Genet; 2020; 11():608421. PubMed ID: 33363575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Agricultural waste biomass for sustainable bioenergy production: Feedstock, characterization and pre-treatment methodologies.
    Kumar JA; Sathish S; Prabu D; Renita AA; Saravanan A; Deivayanai VC; Anish M; Jayaprabakar J; Baigenzhenov O; Hosseini-Bandegharaei A
    Chemosphere; 2023 Aug; 331():138680. PubMed ID: 37119925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphate supply influenced the growth, yield and expression of PHT1 family phosphate transporters in seven millets.
    Maharajan T; Ceasar SA; Krishna TPA; Ignacimuthu S
    Planta; 2019 Nov; 250(5):1433-1448. PubMed ID: 31300887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trends in millet and pseudomillet proteins - Characterization, processing and food applications.
    Sharma N; Sahu JK; Bansal V; Esua OJ; Rana S; Bhardwaj A; Punia Bangar S; Adedeji AA
    Food Res Int; 2023 Feb; 164():112310. PubMed ID: 36737904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dehulled small millets: The promising nutricereals for improving the nutrition of children.
    Durairaj M; Gurumurthy G; Nachimuthu V; Muniappan K; Balasubramanian S
    Matern Child Nutr; 2019 May; 15 Suppl 3(Suppl 3):e12791. PubMed ID: 31148399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Barnyard Millet for Food and Nutritional Security: Current Status and Future Research Direction.
    Renganathan VG; Vanniarajan C; Karthikeyan A; Ramalingam J
    Front Genet; 2020; 11():500. PubMed ID: 32655612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mainstreaming orphan millets for advancing climate smart agriculture to secure nutrition and health.
    Babele PK; Kudapa H; Singh Y; Varshney RK; Kumar A
    Front Plant Sci; 2022; 13():902536. PubMed ID: 36035707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nutritional and health-promoting attributes of millet: current and future perspectives.
    Samtiya M; Aluko RE; Dhaka N; Dhewa T; Puniya AK
    Nutr Rev; 2023 May; 81(6):684-704. PubMed ID: 36219789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploration of millet models for developing nutrient rich graminaceous crops.
    Muthamilarasan M; Dhaka A; Yadav R; Prasad M
    Plant Sci; 2016 Jan; 242():89-97. PubMed ID: 26566827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-Wide Population Structure Analyses of Three Minor Millets: Kodo Millet, Little Millet, and Proso Millet.
    Johnson M; Deshpande S; Vetriventhan M; Upadhyaya HD; Wallace JG
    Plant Genome; 2019 Nov; 12(3):1-9. PubMed ID: 33016596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of a 20 kD prolamin from kodo millet (Paspalum scrobiculatum) (L.): homology with other millets and cereals.
    Parameswaran KP; Thayumanavan B
    Plant Foods Hum Nutr; 1997; 50(4):359-73. PubMed ID: 9477430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of millets in the post-genomic era.
    Ajeesh Krishna TP; Maharajan T; Ceasar SA
    Physiol Mol Biol Plants; 2022 Mar; 28(3):669-685. PubMed ID: 35465206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biophysical potential of crop residues for biochar carbon sequestration, and co-benefits, in Uganda.
    Roobroeck D; Hood-Nowotny R; Nakubulwa D; Tumuhairwe JB; Mwanjalolo MJG; Ndawula I; Vanlauwe B
    Ecol Appl; 2019 Dec; 29(8):e01984. PubMed ID: 31351025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic and genomic interventions in crop biofortification: Examples in millets.
    Kudapa H; Barmukh R; Vemuri H; Gorthy S; Pinnamaneni R; Vetriventhan M; Srivastava RK; Joshi P; Habyarimana E; Gupta SK; Govindaraj M
    Front Plant Sci; 2023; 14():1123655. PubMed ID: 36950360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biofortification in Millets: A Sustainable Approach for Nutritional Security.
    Vinoth A; Ravindhran R
    Front Plant Sci; 2017; 8():29. PubMed ID: 28167953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterisation of several types of millets as functional food ingredients.
    Bora P; Ragaee S; Marcone M
    Int J Food Sci Nutr; 2019 Sep; 70(6):714-724. PubMed ID: 30969135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.