These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37343862)

  • 1. Electrification of New Zealand transport: Environmental impacts and role of renewable energy.
    Reguyal F; Wang K; Sarmah AK
    Sci Total Environ; 2023 Oct; 894():164936. PubMed ID: 37343862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Life cycle assessment of battery electric vehicles: Implications of future electricity mix and different battery end-of-life management.
    Koroma MS; Costa D; Philippot M; Cardellini G; Hosen MS; Coosemans T; Messagie M
    Sci Total Environ; 2022 Jul; 831():154859. PubMed ID: 35358517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrification of public buses in Jakarta, Indonesia: A life cycle study.
    Ginting MG; Reguyal F; Cecilia VM; Wang K; Sarmah AK
    Sci Total Environ; 2024 Mar; 914():169875. PubMed ID: 38185147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Well-to-wheel greenhouse gas emissions of electric versus combustion vehicles from 2018 to 2030 in the US.
    Challa R; Kamath D; Anctil A
    J Environ Manage; 2022 Apr; 308():114592. PubMed ID: 35121453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Comparative life cycle environmental assessment between electric taxi and gasoline taxi in Beijing].
    Shi XQ; Sun ZX; Li XN; Li JX; Yang JX
    Huan Jing Ke Xue; 2015 Mar; 36(3):1105-16. PubMed ID: 25929083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Greenhouse gas emission benefits of adopting new energy vehicles in Suzhou City, China: A case study.
    Da C; Gu X; Lu C; Hua R; Chang X; Cheng Y; Qian F; Wang Y
    Environ Sci Pollut Res Int; 2022 Oct; 29(50):76286-76297. PubMed ID: 35668254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of the life cycle assessment of electric vehicles: Considering the influence of batteries.
    Xia X; Li P
    Sci Total Environ; 2022 Mar; 814():152870. PubMed ID: 34990672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reducing Greenhouse Gas Emissions from U.S. Light-Duty Transport in Line with the 2 °C Target.
    Zhu Y; Skerlos S; Xu M; Cooper DR
    Environ Sci Technol; 2021 Jul; 55(13):9326-9338. PubMed ID: 34106694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Which type of electric vehicle is worth promoting mostly in the context of carbon peaking and carbon neutrality? A case study for a metropolis in China.
    Yu Y; Xu H; Cheng J; Wan F; Ju L; Liu Q; Liu J
    Sci Total Environ; 2022 Sep; 837():155626. PubMed ID: 35504393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental life cycle assessment of battery electric vehicles from the current and future energy mix perspective.
    Shafique M; Luo X
    J Environ Manage; 2022 Feb; 303():114050. PubMed ID: 34872799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Greenhouse gas implications of fleet electrification based on big data-informed individual travel patterns.
    Cai H; Xu M
    Environ Sci Technol; 2013 Aug; 47(16):9035-43. PubMed ID: 23869607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Life cycle environmental impact of high-capacity lithium ion battery with silicon nanowires anode for electric vehicles.
    Li B; Gao X; Li J; Yuan C
    Environ Sci Technol; 2014; 48(5):3047-55. PubMed ID: 24483341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cradle-to-Gate Emissions from a Commercial Electric Vehicle Li-Ion Battery: A Comparative Analysis.
    Kim HC; Wallington TJ; Arsenault R; Bae C; Ahn S; Lee J
    Environ Sci Technol; 2016 Jul; 50(14):7715-22. PubMed ID: 27303957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Future Perspective on Waste Management of Lithium-Ion Batteries for Electric Vehicles in Lao PDR: Current Status and Challenges.
    Noudeng V; Quan NV; Xuan TD
    Int J Environ Res Public Health; 2022 Dec; 19(23):. PubMed ID: 36498242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decentralized energy in flexible energy system: Life cycle environmental impacts in Belgium.
    Huber D; Costa D; Felice A; Valkering P; Coosemans T; Messagie M
    Sci Total Environ; 2023 Aug; 886():163882. PubMed ID: 37160185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating the environmental impacts of global lithium-ion battery supply chain: A temporal, geographical, and technological perspective.
    Llamas-Orozco JA; Meng F; Walker GS; Abdul-Manan AFN; MacLean HL; Posen ID; McKechnie J
    PNAS Nexus; 2023 Nov; 2(11):pgad361. PubMed ID: 38034093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Life cycle CO
    Yu R; Cong L; Hui Y; Zhao D; Yu B
    Sci Total Environ; 2022 Jun; 826():154102. PubMed ID: 35218846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental and economic evaluation of remanufacturing lithium-ion batteries from electric vehicles.
    Xiong S; Ji J; Ma X
    Waste Manag; 2020 Feb; 102():579-586. PubMed ID: 31770692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of Li-ion batteries to the environmental impact of electric vehicles.
    Notter DA; Gauch M; Widmer R; Wäger P; Stamp A; Zah R; Althaus HJ
    Environ Sci Technol; 2010 Sep; 44(17):6550-6. PubMed ID: 20695466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electricity carbon intensity in European Member States: Impacts on GHG emissions of electric vehicles.
    Moro A; Lonza L
    Transp Res D Transp Environ; 2018 Oct; 64():5-14. PubMed ID: 30740029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.