These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37344346)

  • 1. Ice Formation during PEM Fuel Cell Cold Start: Acceptable or Not?
    Liang J; Fan L; Du Q; Yin Y; Jiao K
    Adv Sci (Weinh); 2023 Aug; 10(24):e2302151. PubMed ID: 37344346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research on Cold Start of Proton-Exchange Membrane Fuel Cells Based on Model Predictive Control.
    Xiong S; Wu Z; Jiang Q; Zhao J; Wang T; Deng J; Huang H
    Membranes (Basel); 2023 Feb; 13(2):. PubMed ID: 36837687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research Progress of Proton Exchange Membrane Failure and Mitigation Strategies.
    Xing Y; Li H; Avgouropoulos G
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34065763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-Dimensional Simulation of the Freezing Characteristics in PEMFCs during Cold Start Considering Ice Crystallization Kinetics.
    Jiang P; Zhan Z; Zhang D; Wang C; Zhang H; Pan M
    Polymers (Basel); 2022 Aug; 14(15):. PubMed ID: 35956717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties and degradation of the gasket component of a proton exchange membrane fuel cell--a review.
    Basuli U; Jose J; Lee RH; Yoo YH; Jeong KU; Ahn JH; Nah C
    J Nanosci Nanotechnol; 2012 Oct; 12(10):7641-57. PubMed ID: 23421125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of porous properties on cold-start behavior of polymer electrolyte fuel cells from sub-zero to normal operating temperatures.
    Gwak G; Ko J; Ju H
    Sci Rep; 2014 Aug; 4():5770. PubMed ID: 25712425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proton Exchange Membrane (PEM) Fuel Cells with Platinum Group Metal (PGM)-Free Cathode.
    Du L; Zhang G; Sun S
    Automot Innov; 2021; 4(2):131-143. PubMed ID: 34804628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance Analysis of a Proton Exchange Membrane Fuel Cell Based Syngas.
    Zhang X; Lin Q; Liu H; Chen X; Su S; Ni M
    Entropy (Basel); 2019 Jan; 21(1):. PubMed ID: 33266801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating effect of proton-exchange membrane on new air-cathode single-chamber microbial fuel cell configuration for bioenergy recovery from Azorubine dye degradation.
    Kardi SN; Ibrahim N; Rashid NAA; Darzi GN
    Environ Sci Pollut Res Int; 2019 Jul; 26(21):21201-21215. PubMed ID: 31115820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proton exchange membrane and bio-Fenton micro fuel cells for energy harvesting, gas leakage detection, and dye degradation.
    Basak M; Mitra S; Gooh Pattader PS
    RSC Adv; 2021 Mar; 11(21):12720-12728. PubMed ID: 35423817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ fluorescence spectroscopy correlates ionomer degradation to reactive oxygen species generation in an operating fuel cell.
    Prabhakaran V; Arges CG; Ramani V
    Phys Chem Chem Phys; 2013 Nov; 15(43):18965-72. PubMed ID: 24092495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of humidification of reactive gases on the performance of a proton exchange membrane fuel cell.
    Wilberforce T; Ijaodola O; Khatib FN; Ogungbemi EO; El Hassan Z; Thompson J; Olabi AG
    Sci Total Environ; 2019 Oct; 688():1016-1035. PubMed ID: 31726535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Features of the Degradation of the Proton-Conducting Polymer Nafion in Highly Porous Electrodes of PEM Fuel Cells.
    Nechitailov AA; Volovitch P; Glebova NV; Krasnova A
    Membranes (Basel); 2023 Mar; 13(3):. PubMed ID: 36984729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure, Property, and Performance of Catalyst Layers in Proton Exchange Membrane Fuel Cells.
    Zhao J; Liu H; Li X
    Electrochem Energ Rev; 2023; 6(1):13. PubMed ID: 37007279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms underlying insect freeze tolerance.
    Toxopeus J; Sinclair BJ
    Biol Rev Camb Philos Soc; 2018 Nov; 93(4):1891-1914. PubMed ID: 29749114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of 1, 2, 4-Triazole Additive on PEM Fuel Cell Conditioning.
    Zhao N; Shi Z; Chenitz R; Girard F; Mokrini A
    Membranes (Basel); 2020 Oct; 10(11):. PubMed ID: 33105596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-PGM and PGM-Free Catalysts for Proton Exchange Membrane Fuel Cells: Stability Challenges and Material Solutions.
    Du L; Prabhakaran V; Xie X; Park S; Wang Y; Shao Y
    Adv Mater; 2021 Feb; 33(6):e1908232. PubMed ID: 32240570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Internal Microscopic Diagnosis of Accelerated Aging of Proton Exchange Membrane Water Electrolysis Cell Stack.
    Lee CY; Chen CH; Jung GB; Li SC; Zeng YZ
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33291618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automotive Subzero Cold-Start Quasi-Adiabatic Proton Exchange Membrane Fuel Cell Fixture: Design and Validation.
    Pistono AO; Rice CA
    Molecules; 2020 Mar; 25(6):. PubMed ID: 32204539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and evaluation of a novel plan for thermochemical cycles and PEM fuel cells to produce hydrogen and power: Application of environmental perspective.
    Yu D; Duan C; Gu B
    Chemosphere; 2023 Sep; 334():138935. PubMed ID: 37211169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.