BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

476 related articles for article (PubMed ID: 37344450)

  • 1. Human pluripotent stem cell (hPSC) and organoid models of autism: opportunities and limitations.
    Kilpatrick S; Irwin C; Singh KK
    Transl Psychiatry; 2023 Jun; 13(1):217. PubMed ID: 37344450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling Autism Spectrum Disorders with Induced Pluripotent Stem Cell-Derived Brain Organoids.
    Santos JLS; Araújo CA; Rocha CAG; Costa-Ferro ZSM; Souza BSF
    Biomolecules; 2023 Jan; 13(2):. PubMed ID: 36830629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling Developmental Brain Diseases Using Human Pluripotent Stem Cells-Derived Brain Organoids - Progress and Perspective.
    Bhattacharya A; Choi WWY; Muffat J; Li Y
    J Mol Biol; 2022 Feb; 434(3):167386. PubMed ID: 34883115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dysregulation of Neurite Outgrowth and Cell Migration in Autism and Other Neurodevelopmental Disorders.
    Prem S; Millonig JH; DiCicco-Bloom E
    Adv Neurobiol; 2020; 25():109-153. PubMed ID: 32578146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D brain Organoids derived from pluripotent stem cells: promising experimental models for brain development and neurodegenerative disorders.
    Lee CT; Bendriem RM; Wu WW; Shen RF
    J Biomed Sci; 2017 Aug; 24(1):59. PubMed ID: 28822354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human stem cell-based models for studying autism spectrum disorder-related neuronal dysfunction.
    Cheffer A; Flitsch LJ; Krutenko T; Röderer P; Sokhranyaeva L; Iefremova V; Hajo M; Peitz M; Schwarz MK; Brüstle O
    Mol Autism; 2020 Dec; 11(1):99. PubMed ID: 33308283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic 3D Combinatorial Generation of hPSC-Derived Neuromesodermal Organoids With Diverse Regional and Cellular Identities.
    Whye D; Wood D; Kim KH; Chen C; Makhortova N; Sahin M; Buttermore ED
    Curr Protoc; 2022 Oct; 2(10):e568. PubMed ID: 36264199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human Inducible Pluripotent Stem Cells and Autism Spectrum Disorder: Emerging Technologies.
    Nestor MW; Phillips AW; Artimovich E; Nestor JE; Hussman JP; Blatt GJ
    Autism Res; 2016 May; 9(5):513-35. PubMed ID: 26426199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of Autism Using Organoid Technology.
    Choi H; Song J; Park G; Kim J
    Mol Neurobiol; 2017 Dec; 54(10):7789-7795. PubMed ID: 27844287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human Pluripotent Stem Cell-Based Models for Hirschsprung Disease: From 2-D Cell to 3-D Organoid Model.
    Lui KN; Ngan ES
    Cells; 2022 Oct; 11(21):. PubMed ID: 36359824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Psychiatry in a Dish: Stem Cells and Brain Organoids Modeling Autism Spectrum Disorders.
    Ilieva M; Fex Svenningsen Å; Thorsen M; Michel TM
    Biol Psychiatry; 2018 Apr; 83(7):558-568. PubMed ID: 29295738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro models for ASD-patient-derived iPSCs and cerebral organoids.
    Hohmann SS; Ilieva M; Michel TM
    Prog Mol Biol Transl Sci; 2020; 173():355-375. PubMed ID: 32711817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling endodermal organ development and diseases using human pluripotent stem cell-derived organoids.
    Pan FC; Evans T; Chen S
    J Mol Cell Biol; 2020 Aug; 12(8):580-592. PubMed ID: 32652003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human pluripotent stem cell-derived lung organoids: Potential applications in development and disease modeling.
    Tian L; Gao J; Garcia IM; Chen HJ; Castaldi A; Chen YW
    Wiley Interdiscip Rev Dev Biol; 2021 Nov; 10(6):e399. PubMed ID: 33145915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a 3-D Organoid System Using Human Induced Pluripotent Stem Cells to Model Idiopathic Autism.
    Lunden JW; Durens M; Nestor J; Niescier RF; Herold K; Brandenburg C; Lin YC; Blatt GJ; Nestor MW
    Adv Neurobiol; 2020; 25():259-297. PubMed ID: 32578151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain organoids: A revolutionary tool for modeling neurological disorders and development of therapeutics.
    Acharya P; Choi NY; Shrestha S; Jeong S; Lee MY
    Biotechnol Bioeng; 2024 Feb; 121(2):489-506. PubMed ID: 38013504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cultures and cures: neurodiversity and brain organoids.
    Barnhart AJ; Dierickx K
    BMC Med Ethics; 2021 May; 22(1):61. PubMed ID: 34001098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using iPSC-Based Models to Understand the Signaling and Cellular Phenotypes in Idiopathic Autism and 16p11.2 Derived Neurons.
    Turkalj L; Mehta M; Matteson P; Prem S; Williams M; Connacher RJ; DiCicco-Bloom E; Millonig JH
    Adv Neurobiol; 2020; 25():79-107. PubMed ID: 32578145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. iPSC toolbox for understanding and repairing disrupted brain circuits in autism.
    Chiola S; Edgar NU; Shcheglovitov A
    Mol Psychiatry; 2022 Jan; 27(1):249-258. PubMed ID: 34497379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The promises and challenges of human brain organoids as models of neuropsychiatric disease.
    Quadrato G; Brown J; Arlotta P
    Nat Med; 2016 Nov; 22(11):1220-1228. PubMed ID: 27783065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.