These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37344485)

  • 1. Artificial intelligence driven design of catalysts and materials for ring opening polymerization using a domain-specific language.
    Park NH; Manica M; Born J; Hedrick JL; Erdmann T; Zubarev DY; Adell-Mill N; Arrechea PL
    Nat Commun; 2023 Jun; 14(1):3686. PubMed ID: 37344485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Open Macromolecular Genome: Generative Design of Synthetically Accessible Polymers.
    Kim S; Schroeder CM; Jackson NE
    ACS Polym Au; 2023 Aug; 3(4):318-330. PubMed ID: 37576712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational approach to polymer-supported catalysts: synergy between catalytic reaction mechanism and polymer design.
    Madhavan N; Jones CW; Weck M
    Acc Chem Res; 2008 Sep; 41(9):1153-65. PubMed ID: 18793027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustainability and Polyesters: Beyond Metals and Monomers to Function and Fate.
    De Hoe GX; Şucu T; Shaver MP
    Acc Chem Res; 2022 Jun; 55(11):1514-1523. PubMed ID: 35579567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Author Correction: Artificial intelligence driven design of catalysts and materials for ring opening polymerization using a domain-specific language.
    Park NH; Manica M; Born J; Hedrick JL; Erdmann T; Zubarev DY; Adell-Mill N; Arrechea PL
    Nat Commun; 2023 Jul; 14(1):4469. PubMed ID: 37491475
    [No Abstract]   [Full Text] [Related]  

  • 7. Advancing materials science through next-generation machine learning.
    Unni R; Zhou M; Wiecha PR; Zheng Y
    Curr Opin Solid State Mater Sci; 2024 Jun; 30():. PubMed ID: 39077430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progress and prospects for accelerating materials science with automated and autonomous workflows.
    Stein HS; Gregoire JM
    Chem Sci; 2019 Nov; 10(42):9640-9649. PubMed ID: 32153744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perspectives on development of biomedical polymer materials in artificial intelligence age.
    Xie S
    J Biomater Appl; 2023 Mar; 37(8):1355-1375. PubMed ID: 36629787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiomyocyte mitochondrial dynamic-related lncRNA 1 (CMDL-1) may serve as a potential therapeutic target in doxorubicin cardiotoxicity.
    Aung LHH; Chen X; Cueva Jumbo JC; Li Z; Wang SY; Zhao C; Liu Z; Wang Y; Li P
    Mol Ther Nucleic Acids; 2021 Sep; 25():638-651. PubMed ID: 34589283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic text classification of actionable radiology reports of tinnitus patients using bidirectional encoder representations from transformer (BERT) and in-domain pre-training (IDPT).
    Li J; Lin Y; Zhao P; Liu W; Cai L; Sun J; Zhao L; Yang Z; Song H; Lv H; Wang Z
    BMC Med Inform Decis Mak; 2022 Jul; 22(1):200. PubMed ID: 35907966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A primer on applying AI synergistically with domain expertise to oncology.
    Kim J; Kusko R; Zeskind B; Zhang J; Escalante-Chong R
    Biochim Biophys Acta Rev Cancer; 2021 Aug; 1876(1):188548. PubMed ID: 33901609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trends in Deep Learning for Property-driven Drug Design.
    Born J; Manica M
    Curr Med Chem; 2021; 28(38):7862-7886. PubMed ID: 34325627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FhuA: From Iron-Transporting Transmembrane Protein to Versatile Scaffolds through Protein Engineering.
    Sauer DF; Markel U; Schiffels J; Okuda J; Schwaneberg U
    Acc Chem Res; 2023 Jun; 56(12):1433-1444. PubMed ID: 37191525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional Output Regression for Machine Learning in Materials Science.
    Iwayama M; Wu S; Liu C; Yoshida R
    J Chem Inf Model; 2022 Oct; 62(20):4837-4851. PubMed ID: 36216342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymerization of Cyclopropenes: Taming the Strain for the Synthesis of Controlled and Sequence-Regulated Polymers.
    Elling BR; Su JK; Xia Y
    Acc Chem Res; 2021 Jan; 54(2):356-365. PubMed ID: 33371668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scalable Approach to Molecular Motor-Polymer Conjugates for Light-Driven Artificial Muscles.
    Yao X; Vishnu JA; Lupfer C; Hoenders D; Skarsetz O; Chen W; Dattler D; Perrot A; Wang WZ; Gao C; Giuseppone N; Schmid F; Walther A
    Adv Mater; 2024 Jul; 36(28):e2403514. PubMed ID: 38613525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Design-to-Device Pipeline for Data-Driven Materials Discovery.
    Cole JM
    Acc Chem Res; 2020 Mar; 53(3):599-610. PubMed ID: 32096410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated Experimentation Powers Data Science in Chemistry.
    Shi Y; Prieto PL; Zepel T; Grunert S; Hein JE
    Acc Chem Res; 2021 Feb; 54(3):546-555. PubMed ID: 33471522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Machine Learning for Chemical Catalysis: Prospects and Challenges.
    Singh S; Sunoj RB
    Acc Chem Res; 2023 Feb; 56(3):402-412. PubMed ID: 36715248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.