These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 37344914)
1. Human VDAC pseudogenes: an emerging role for VDAC1P8 pseudogene in acute myeloid leukemia. Pappalardo XG; Risiglione P; Zinghirino F; Ostuni A; Luciano D; Bisaccia F; De Pinto V; Guarino F; Messina A Biol Res; 2023 Jun; 56(1):33. PubMed ID: 37344914 [TBL] [Abstract][Full Text] [Related]
2. Is the secret of VDAC Isoforms in their gene regulation? Characterization of human Zinghirino F; Pappalardo XG; Messina A; Guarino F; De Pinto V Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33036380 [TBL] [Abstract][Full Text] [Related]
3. Utility of syntenic relationships of VDAC1 pseudogenes for not only an understanding of the phylogenetic divergence history of rodents, but also ascertaining possible pseudogene candidates as genuine pseudogenes. Ido Y; Yoshitomi T; Ohkura K; Yamamoto T; Shinohara Y Genomics; 2014 Aug; 104(2):128-33. PubMed ID: 24858958 [TBL] [Abstract][Full Text] [Related]
4. VDAC isoforms in mammals. Messina A; Reina S; Guarino F; De Pinto V Biochim Biophys Acta; 2012 Jun; 1818(6):1466-76. PubMed ID: 22020053 [TBL] [Abstract][Full Text] [Related]
5. Protein-protein interaction networks as a new perspective to evaluate distinct functional roles of voltage-dependent anion channel isoforms. Caterino M; Ruoppolo M; Mandola A; Costanzo M; Orrù S; Imperlini E Mol Biosyst; 2017 Nov; 13(12):2466-2476. PubMed ID: 29028058 [TBL] [Abstract][Full Text] [Related]
12. α-Synuclein emerges as a potent regulator of VDAC-facilitated calcium transport. Rosencrans WM; Aguilella VM; Rostovtseva TK; Bezrukov SM Cell Calcium; 2021 May; 95():102355. PubMed ID: 33578201 [TBL] [Abstract][Full Text] [Related]
13. Voltage-dependent anion channels (VDACs) recruit Parkin to defective mitochondria to promote mitochondrial autophagy. Sun Y; Vashisht AA; Tchieu J; Wohlschlegel JA; Dreier L J Biol Chem; 2012 Nov; 287(48):40652-60. PubMed ID: 23060438 [TBL] [Abstract][Full Text] [Related]
14. Warburg revisited: regulation of mitochondrial metabolism by voltage-dependent anion channels in cancer cells. Maldonado EN; Lemasters JJ J Pharmacol Exp Ther; 2012 Sep; 342(3):637-41. PubMed ID: 22700429 [TBL] [Abstract][Full Text] [Related]
15. Molecular and genetic characterization of the gene family encoding the voltage-dependent anion channel in Arabidopsis. Tateda C; Watanabe K; Kusano T; Takahashi Y J Exp Bot; 2011 Oct; 62(14):4773-85. PubMed ID: 21705391 [TBL] [Abstract][Full Text] [Related]
16. [Voltage-dependent anion channel and hematological malignancies]. Sun Y; Chen Y Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2010 Feb; 18(1):255-61. PubMed ID: 20137159 [TBL] [Abstract][Full Text] [Related]
17. Pseudogenes transcribed in breast invasive carcinoma show subtype-specific expression and ceRNA potential. Welch JD; Baran-Gale J; Perou CM; Sethupathy P; Prins JF BMC Genomics; 2015 Feb; 16(1):113. PubMed ID: 25765044 [TBL] [Abstract][Full Text] [Related]
18. Expression profiling of mitochondrial voltage-dependent anion channel-1 associated genes predicts recurrence-free survival in human carcinomas. Ko JH; Gu W; Lim I; Zhou T; Bang H PLoS One; 2014; 9(10):e110094. PubMed ID: 25333947 [TBL] [Abstract][Full Text] [Related]
19. Anti-Cancer Compounds Targeted to VDAC: Potential and Perspectives. Reina S; De Pinto V Curr Med Chem; 2017; 24(40):4447-4469. PubMed ID: 28554318 [TBL] [Abstract][Full Text] [Related]