BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 37345051)

  • 1. Controllability and Robustness of Functional and Structural Connectomic Networks in Glioma Patients.
    Meyer-Baese A; Jütten K; Meyer-Baese U; Amani AM; Malberg H; Stadlbauer A; Kinfe T; Na CH
    Cancers (Basel); 2023 May; 15(10):. PubMed ID: 37345051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissociation of structural and functional connectomic coherence in glioma patients.
    Jütten K; Weninger L; Mainz V; Gauggel S; Binkofski F; Wiesmann M; Merhof D; Clusmann H; Na CH
    Sci Rep; 2021 Aug; 11(1):16790. PubMed ID: 34408195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Target Controllability of Brain Networks in Dementia.
    Tahmassebi A; Meyer-Baese U; Meyer-Baese A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3978-3981. PubMed ID: 34892102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Biomarker in Brain-specific Gene Regulatory Network Using Structural Controllability Analysis.
    Chen Z; Chen S; Qiang X
    Front Bioinform; 2022; 2():812314. PubMed ID: 36304271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered controllability of white matter networks and related brain function changes in first-episode drug-naive schizophrenia.
    Tang B; Zhang W; Liu J; Deng S; Hu N; Li S; Zhao Y; Liu N; Zeng J; Cao H; Sweeney JA; Gong Q; Gu S; Lui S
    Cereb Cortex; 2023 Feb; 33(4):1527-1535. PubMed ID: 36790361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of robustness of interdependent network controllability by redundant design.
    Zhang Z; Yin Y; Zhang X; Liu L
    PLoS One; 2018; 13(2):e0192874. PubMed ID: 29438426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetric tumor-related alterations of network-specific intrinsic functional connectivity in glioma patients.
    Jütten K; Mainz V; Delev D; Gauggel S; Binkofski F; Wiesmann M; Clusmann H; Na CH
    Hum Brain Mapp; 2020 Nov; 41(16):4549-4561. PubMed ID: 32716597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robustness of controllability for networks based on edge-attack.
    Nie S; Wang X; Zhang H; Li Q; Wang B
    PLoS One; 2014; 9(2):e89066. PubMed ID: 24586507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting Network Controllability Robustness: A Convolutional Neural Network Approach.
    Lou Y; He Y; Wang L; Chen G
    IEEE Trans Cybern; 2022 May; 52(5):4052-4063. PubMed ID: 32903192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Removing Leaf Node Neighbors on Network Controllability.
    Wu C; Xu S; Yu Z; Li J
    Entropy (Basel); 2023 Jun; 25(6):. PubMed ID: 37372289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attack Vulnerability of Network Controllability.
    Lu ZM; Li XF
    PLoS One; 2016; 11(9):e0162289. PubMed ID: 27588941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topology, robustness, and structural controllability of the Brazilian Federal Police criminal intelligence network.
    da Cunha BR; Gonçalves S
    Appl Netw Sci; 2018; 3(1):36. PubMed ID: 30839817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controllability in cancer metabolic networks according to drug targets as driver nodes.
    Asgari Y; Salehzadeh-Yazdi A; Schreiber F; Masoudi-Nejad A
    PLoS One; 2013; 8(11):e79397. PubMed ID: 24282504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controllability of flow-conservation networks.
    Zhao C; Zeng A; Jiang R; Yuan Z; Wang WX
    Phys Rev E; 2017 Jul; 96(1-1):012314. PubMed ID: 29347124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Network controllability measures of subnetworks: implications for neurosciences.
    Stocker JE; Nozari E; van Vugt M; Jansen A; Jamalabadi H
    J Neural Eng; 2023 Feb; 20(1):. PubMed ID: 36633267
    [No Abstract]   [Full Text] [Related]  

  • 16. Robust Multiobjective Controllability of Complex Neuronal Networks.
    Tang Y; Gao H; Du W; Lu J; Vasilakos AV; Kurths J
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(4):778-91. PubMed ID: 26441452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the default mode network in longitudinal functional brain reorganization of brain gliomas.
    Saviola F; Zigiotto L; Novello L; Zacà D; Annicchiarico L; Corsini F; Rozzanigo U; Papagno C; Jovicich J; Sarubbo S
    Brain Struct Funct; 2022 Dec; 227(9):2923-2937. PubMed ID: 35460446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robustness of controlling edge dynamics in complex networks against node failure.
    Pang SP; Hao F; Wang WX
    Phys Rev E; 2016 Nov; 94(5-1):052310. PubMed ID: 27967006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural controllability of general edge dynamics in complex network.
    Pang S; Zhou Y; Ren X; Xu F
    Sci Rep; 2023 Feb; 13(1):3393. PubMed ID: 36854719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Network controllability analysis of awake and asleep conditions in the brain.
    He Y; Yan Z; Zhang W; Dong J; Yan H
    J Zhejiang Univ Sci B; 2023 May; 24(5):458-462. PubMed ID: 37190895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.