These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 37345106)

  • 1. Development of a Machine Learning Model to Predict Recurrence of Oral Tongue Squamous Cell Carcinoma.
    Fatapour Y; Abiri A; Kuan EC; Brody JP
    Cancers (Basel); 2023 May; 15(10):. PubMed ID: 37345106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of 5-year overall survival of tongue cancer based machine learning.
    Li L; Pu C; Jin N; Zhu L; Hu Y; Cascone P; Tao Y; Zhang H
    BMC Oral Health; 2023 Aug; 23(1):567. PubMed ID: 37574562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of supervised machine learning classification techniques in prediction of locoregional recurrences in early oral tongue cancer.
    Alabi RO; Elmusrati M; Sawazaki-Calone I; Kowalski LP; Haglund C; Coletta RD; Mäkitie AA; Salo T; Almangush A; Leivo I
    Int J Med Inform; 2020 Apr; 136():104068. PubMed ID: 31923822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Web-based prognostic tools for oral tongue cancer: An analysis of online predictors.
    Wahab A; Bello IO; Alabi RO; Mascitti M; Troiano G; Mauramo M; Coletta RD; Salo T; Almangush A
    Oral Dis; 2024 Jul; ():. PubMed ID: 38968173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 15-Gene Signature and Prognostic Nomogram for Predicting Overall Survival in Non-Distant Metastatic Oral Tongue Squamous Cell Carcinoma.
    Liu M; Tong L; Liang B; Song X; Xie L; Peng H; Huang D
    Front Oncol; 2021; 11():587548. PubMed ID: 33767977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning application for prediction of locoregional recurrences in early oral tongue cancer: a Web-based prognostic tool.
    Alabi RO; Elmusrati M; Sawazaki-Calone I; Kowalski LP; Haglund C; Coletta RD; Mäkitie AA; Salo T; Leivo I; Almangush A
    Virchows Arch; 2019 Oct; 475(4):489-497. PubMed ID: 31422502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine Learning Predicts Lymph Node Metastasis in Early-Stage Oral Tongue Squamous Cell Carcinoma.
    Shan J; Jiang R; Chen X; Zhong Y; Zhang W; Xie L; Cheng J; Jiang H
    J Oral Maxillofac Surg; 2020 Dec; 78(12):2208-2218. PubMed ID: 32649894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Prognostic Model Generated from an Apparent Diffusion Coefficient Ratio Reliably Predicts the Outcomes of Oral Tongue Squamous Cell Carcinoma.
    Cai L; Li X; Wu L; Wang B; Si M; Tao X
    Curr Oncol; 2022 Nov; 29(12):9031-9045. PubMed ID: 36547122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early detection of squamous cell carcinoma of the oral tongue using multidimensional plasma protein analysis and interpretable machine learning.
    Gu X; Salehi A; Wang L; Coates PJ; Sgaramella N; Nylander K
    J Oral Pathol Med; 2023 Aug; 52(7):637-643. PubMed ID: 37428440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and Assessment of a Machine Learning Model to Help Predict Survival Among Patients With Oral Squamous Cell Carcinoma.
    Karadaghy OA; Shew M; New J; Bur AM
    JAMA Otolaryngol Head Neck Surg; 2019 Dec; 145(12):1115-1120. PubMed ID: 31045212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Risk Prediction Model for Physical Restraints Among Older Chinese Adults in Long-term Care Facilities: Machine Learning Study.
    Wang J; Chen H; Wang H; Liu W; Peng D; Zhao Q; Xiao M
    J Med Internet Res; 2023 Apr; 25():e43815. PubMed ID: 37023416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning in oral squamous cell carcinoma: Current status, clinical concerns and prospects for future-A systematic review.
    Alabi RO; Youssef O; Pirinen M; Elmusrati M; Mäkitie AA; Leivo I; Almangush A
    Artif Intell Med; 2021 May; 115():102060. PubMed ID: 34001326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning approaches for prediction of early death among lung cancer patients with bone metastases using routine clinical characteristics: An analysis of 19,887 patients.
    Cui Y; Shi X; Wang S; Qin Y; Wang B; Che X; Lei M
    Front Public Health; 2022; 10():1019168. PubMed ID: 36276398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning-based MRI texture analysis to predict occult lymph node metastasis in early-stage oral tongue squamous cell carcinoma.
    Yuan Y; Ren J; Tao X
    Eur Radiol; 2021 Sep; 31(9):6429-6437. PubMed ID: 33569617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Portrait of Oral Tongue Squamous Cell Carcinoma Shown by Integrative Meta-Analysis of Expression Profiles with Validations.
    Thangaraj SV; Shyamsundar V; Krishnamurthy A; Ramani P; Ganesan K; Muthuswami M; Ramshankar V
    PLoS One; 2016; 11(6):e0156582. PubMed ID: 27280700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of an Interpretable Machine Learning Model to Predict Lymph Node Metastasis in Patients with Laryngeal Carcinoma.
    Feng M; Zhang J; Zhou X; Mo H; Jia L; Zhang C; Hu Y; Yuan W
    J Oncol; 2022; 2022():6356399. PubMed ID: 36411795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning and treatment outcome prediction for oral cancer.
    Chu CS; Lee NP; Adeoye J; Thomson P; Choi SW
    J Oral Pathol Med; 2020 Nov; 49(10):977-985. PubMed ID: 32740951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning to predict occult nodal metastasis in early oral squamous cell carcinoma.
    Bur AM; Holcomb A; Goodwin S; Woodroof J; Karadaghy O; Shnayder Y; Kakarala K; Brant J; Shew M
    Oral Oncol; 2019 May; 92():20-25. PubMed ID: 31010618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of diagnostic and prognostic signatures derived from preoperative blood parameters for oral squamous cell carcinoma.
    Wu X; Yao Y; Dai Y; Diao P; Zhang Y; Zhang P; Li S; Jiang H; Cheng J
    Ann Transl Med; 2021 Aug; 9(15):1220. PubMed ID: 34532357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a machine learning model for the prediction of nodal metastasis in early T classification oral squamous cell carcinoma: SEER-based population study.
    Kwak MS; Eun YG; Lee JW; Lee YC
    Head Neck; 2021 Aug; 43(8):2316-2324. PubMed ID: 33792112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.