These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 37345639)

  • 1. Fuel-Driven Redox Reactions in Electrolyte-Free Polymer Actuators for Soft Robotics.
    Sarikaya S; Gardea F; Auletta JT; Langrock A; Kim H; Mackie DM; Naraghi M
    ACS Appl Mater Interfaces; 2023 Jul; 15(26):31803-31811. PubMed ID: 37345639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electroactive Artificial Muscles Based on Functionally Antagonistic Core-Shell Polymer Electrolyte Derived from PS-
    Nguyen VH; Kim J; Tabassian R; Kotal M; Jun K; Oh JH; Son JM; Manzoor MT; Kim KJ; Oh IK
    Adv Sci (Weinh); 2019 Mar; 6(5):1801196. PubMed ID: 30886790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What is an artificial muscle? A comparison of soft actuators to biological muscles.
    Higueras-Ruiz DR; Nishikawa K; Feigenbaum H; Shafer M
    Bioinspir Biomim; 2021 Dec; 17(1):. PubMed ID: 34792040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-High Actuation Stress Polymer Actuators as Light-Driven Artificial Muscles.
    Bhatti MRA; Bilotti E; Zhang H; Varghese S; Verpaalen RCP; Schenning APHJ; Bastiaansen CWM; Peijs T
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):33210-33218. PubMed ID: 32580542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dielectric Elastomer Artificial Muscle: Materials Innovations and Device Explorations.
    Qiu Y; Zhang E; Plamthottam R; Pei Q
    Acc Chem Res; 2019 Feb; 52(2):316-325. PubMed ID: 30698006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Acid-Driven Bioinspired Self-Resettable Bilayer Hydrogel Actuator Mimicking Natural Muscles.
    Nan M; Guo K; Jia T; Wang G; Liu S
    ACS Appl Mater Interfaces; 2024 Feb; 16(7):9224-9230. PubMed ID: 38335011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smart Bioinspired Actuators: Crawling, Linear, and Bending Motions through a Multilayer Design.
    Barpuzary D; Ham H; Park D; Kim K; Park MJ
    ACS Appl Mater Interfaces; 2021 Oct; 13(42):50381-50391. PubMed ID: 34657431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled flight of a microrobot powered by soft artificial muscles.
    Chen Y; Zhao H; Mao J; Chirarattananon P; Helbling EF; Hyun NP; Clarke DR; Wood RJ
    Nature; 2019 Nov; 575(7782):324-329. PubMed ID: 31686057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Electrolyte-Free Conducting Polymer Actuator that Displays Electrothermal Bending and Flapping Wing Motions under a Magnetic Field.
    Uh K; Yoon B; Lee CW; Kim JM
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1289-96. PubMed ID: 26717199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast low-voltage electroactive actuators using nanostructured polymer electrolytes.
    Kim O; Shin TJ; Park MJ
    Nat Commun; 2013; 4():2208. PubMed ID: 23896756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multivapor-Responsive Controlled Actuation of Starch-Based Soft Actuators.
    Kumar V; Siraj SA; Satapathy DK
    ACS Appl Mater Interfaces; 2024 Jan; 16(3):3966-3977. PubMed ID: 38224457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electroactive Polymer-Based Composites for Artificial Muscle-like Actuators: A Review.
    Maksimkin AV; Dayyoub T; Telyshev DV; Gerasimenko AY
    Nanomaterials (Basel); 2022 Jul; 12(13):. PubMed ID: 35808110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-Deformation Curling Actuators Based on Carbon Nanotube Composite: Advanced-Structure Design and Biomimetic Application.
    Chen L; Weng M; Zhou Z; Zhou Y; Zhang L; Li J; Huang Z; Zhang W; Liu C; Fan S
    ACS Nano; 2015 Dec; 9(12):12189-96. PubMed ID: 26512734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Performance Multiresponsive Paper Actuators.
    Amjadi M; Sitti M
    ACS Nano; 2016 Nov; 10(11):10202-10210. PubMed ID: 27744680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiresponsive Ti
    Tang ZH; Zhu WB; Mao YQ; Zhu ZC; Li YQ; Huang P; Fu SY
    ACS Appl Mater Interfaces; 2022 May; 14(18):21474-21485. PubMed ID: 35486453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A strong and tough gelatin/polyvinyl alcohol double network hydrogel actuator with superior actuation strength and fast actuation speed.
    Yao S; Sun X; Ye L; Liang H
    Soft Matter; 2022 Dec; 18(48):9197-9204. PubMed ID: 36454219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible Actuators Based on Conductive Polymer Ionogels and Their Electromechanical Modeling.
    Xu J; Hu H; Zhang S; Cheng G; Ding J
    Polymers (Basel); 2023 Nov; 15(23):. PubMed ID: 38231934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Humidity- and light-driven actuators based on carbon nanotube-coated paper and polymer composite.
    Zhou P; Chen L; Yao L; Weng M; Zhang W
    Nanoscale; 2018 May; 10(18):8422-8427. PubMed ID: 29637961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electroactive Polymer-Based Soft Actuator with Integrated Functions of Multi-Degree-of-Freedom Motion and Perception.
    Wang R; Zhang C; Tan W; Yang J; Lin D; Liu L
    Soft Robot; 2023 Feb; 10(1):119-128. PubMed ID: 35482290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.