BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 37345686)

  • 1. Electrically Conductive and Highly Stretchable Piezoresistive Polymer Nanocomposites via Oxidative Chemical Vapor Deposition.
    Mukherjee A; Dianatdar A; Gładysz MZ; Hemmatpour H; Hendriksen M; Rudolf P; Włodarczyk-Biegun MK; Kamperman M; Prakash Kottapalli AG; Bose RK
    ACS Appl Mater Interfaces; 2023 Jul; 15(26):31899-31916. PubMed ID: 37345686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Review on Conductive Polymer/CNTs Nanocomposites Based Flexible and Stretchable Strain and Pressure Sensors.
    Kanoun O; Bouhamed A; Ramalingame R; Bautista-Quijano JR; Rajendran D; Al-Hamry A
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33419047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stretchable conductive polypyrrole/polyurethane (PPy/PU) strain sensor with netlike microcracks for human breath detection.
    Li M; Li H; Zhong W; Zhao Q; Wang D
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):1313-9. PubMed ID: 24369719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel Electrically Conductive Porous PDMS/Carbon Nanofiber Composites for Deformable Strain Sensors and Conductors.
    Wu S; Zhang J; Ladani RB; Ravindran AR; Mouritz AP; Kinloch AJ; Wang CH
    ACS Appl Mater Interfaces; 2017 Apr; 9(16):14207-14215. PubMed ID: 28398032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stretchable Electronic Sensors of Nanocomposite Network Films for Ultrasensitive Chemical Vapor Sensing.
    Yan H; Zhong M; Lv Z; Wan P
    Small; 2017 Nov; 13(41):. PubMed ID: 28895272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparing Polypyrrole-Coated Stretchable Textile via Low-Temperature Interfacial Polymerization for Highly Sensitive Strain Sensor.
    Chen X; Li B; Qiao Y; Lu Z
    Micromachines (Basel); 2019 Nov; 10(11):. PubMed ID: 31744264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breathable and Large Curved Area Perceptible Flexible Piezoresistive Sensors Fabricated with Conductive Nanofiber Assemblies.
    Zhong W; Jiang H; Jia K; Ding X; Yadav A; Ke Y; Li M; Chen Y; Wang D
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37764-37773. PubMed ID: 32814398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Stretchable Core-Sheath Fibers via Wet-Spinning for Wearable Strain Sensors.
    Tang Z; Jia S; Wang F; Bian C; Chen Y; Wang Y; Li B
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6624-6635. PubMed ID: 29384359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strain-Insensitive Stretchable Fiber Conductors Based on Highly Conductive Buckled Shells for Wearable Electronics.
    Yoon K; Lee S; Shim D; Lee M; Cho S; Kwon C; Won C; Lee S; Lee J; Jung HH; Jang KI; Lee J; Lee T
    ACS Appl Mater Interfaces; 2023 Apr; 15(14):18281-18289. PubMed ID: 36989129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interface Design Strategy for the Fabrication of Highly Stretchable Strain Sensors.
    Sang Z; Ke K; Manas-Zloczower I
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36483-36492. PubMed ID: 30280558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Universal Stretchable Conductive Cellulose/PEDOT:PSS Hybrid Films for Low Hysteresis Multifunctional Stretchable Electronics.
    Wibowo AF; Han JW; Kim JH; Prameswati A; Entifar SAN; Park J; Lee J; Kim S; Lim DC; Eom Y; Moon MW; Kim MS; Kim YH
    ACS Appl Mater Interfaces; 2023 Apr; 15(14):18134-18143. PubMed ID: 37006125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PVA Electrospun Fibers Coated with PPy Nanoparticles for Wearable Strain Sensors.
    Ding J; Mei L; Guo X; Guo D; Ma L; Gui Y; Guo D
    Macromol Rapid Commun; 2023 Jun; 44(12):e2300033. PubMed ID: 37098240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interface-Controlled Conductive Fibers for Wearable Strain Sensors and Stretchable Conducting Wires.
    Cao Z; Wang R; He T; Xu F; Sun J
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):14087-14096. PubMed ID: 29613767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wearable and Stretchable SEBS/CB Polymer Conductive Strand as a Piezoresistive Strain Sensor.
    Jamatia T; Matyas J; Olejnik R; Danova R; Maloch J; Skoda D; Slobodian P; Kuritka I
    Polymers (Basel); 2023 Mar; 15(7):. PubMed ID: 37050233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocompatible Conductive Polymers with High Conductivity and High Stretchability.
    He H; Zhang L; Guan X; Cheng H; Liu X; Yu S; Wei J; Ouyang J
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):26185-26193. PubMed ID: 31257845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Sandwich-Structured Piezoresistive Sensor with Electrospun Nanofiber Mats as Supporting, Sensing, and Packaging Layers.
    Zhao Z; Li B; Xu L; Qiao Y; Wang F; Xia Q; Lu Z
    Polymers (Basel); 2018 May; 10(6):. PubMed ID: 30966609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polypyrrole-Doped Conductive Supramolecular Elastomer with Stretchability, Rapid Self-Healing, and Adhesive Property for Flexible Electronic Sensors.
    Chen J; Liu J; Thundat T; Zeng H
    ACS Appl Mater Interfaces; 2019 May; 11(20):18720-18729. PubMed ID: 31045346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly conductive and tough polyacrylamide/sodium alginate hydrogel with uniformly distributed polypyrrole nanospheres for wearable strain sensors.
    Zhang Y; Li S; Gao Z; Bi D; Qu N; Huang S; Zhao X; Li R
    Carbohydr Polym; 2023 Sep; 315():120953. PubMed ID: 37230609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible and Stretchable PEDOT-Embedded Hybrid Substrates for Bioengineering and Sensory Applications.
    Fallahi A; Mandla S; Kerr-Phillip T; Seo J; Rodrigues RO; Jodat YA; Samanipour R; Hussain MA; Lee CK; Bae H; Khademhosseini A; Travas-Sejdic J; Shin SR
    ChemNanoMat; 2019 Jun; 5(6):729-737. PubMed ID: 33859923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Stretchable and Sensitive Strain Sensor with Porous Segregated Conductive Network.
    Zhou CG; Sun WJ; Jia LC; Xu L; Dai K; Yan DX; Li ZM
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):37094-37102. PubMed ID: 31512856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.