These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37345700)

  • 1. Investigation of contrast mechanisms for MRI phase signal-based proton beam visualization in water phantoms.
    Schieferecke J; Gantz S; Hoffmann A; Pawelke J
    Magn Reson Med; 2023 Nov; 90(5):1776-1788. PubMed ID: 37345700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MRI magnitude signal-based proton beam visualisation in water phantoms reflects composite effects of beam-induced buoyant convection and radiation chemistry.
    Schieferecke J; Gantz S; Karsch L; Pawelke J; Hoffmann A
    Phys Med Biol; 2023 Sep; 68(18):. PubMed ID: 37607554
    [No Abstract]   [Full Text] [Related]  

  • 3. Characterization of magnetic interference and image artefacts during simultaneous in-beam MR imaging and proton pencil beam scanning.
    Gantz S; Hietschold V; Hoffmann AL
    Phys Med Biol; 2020 Nov; 65(21):215014. PubMed ID: 33151908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct visualization of proton beam irradiation effects in liquids by MRI.
    Gantz S; Karsch L; Pawelke J; Schieferecke J; Schellhammer S; Smeets J; van der Kraaij E; Hoffmann A
    Proc Natl Acad Sci U S A; 2023 Jun; 120(23):e2301160120. PubMed ID: 37252953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating a low-field open MR scanner with a static proton research beam line: proof of concept.
    Schellhammer SM; Hoffmann AL; Gantz S; Smeets J; van der Kraaij E; Quets S; Pieck S; Karsch L; Pawelke J
    Phys Med Biol; 2018 Nov; 63(23):23LT01. PubMed ID: 30465549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated MRI-guided proton therapy planning: Accounting for the full MRI field in a perpendicular system.
    Burigo LN; Oborn BM
    Med Phys; 2022 Mar; 49(3):1853-1873. PubMed ID: 34908170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proton beam behavior in a parallel configured MRI-proton therapy hybrid: Effects of time-varying gradient magnetic fields.
    Santos DM; Wachowicz K; Burke B; Fallone BG
    Med Phys; 2019 Feb; 46(2):822-838. PubMed ID: 30488968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proton beam deflection in MRI fields: Implications for MRI-guided proton therapy.
    Oborn BM; Dowdell S; Metcalfe PE; Crozier S; Mohan R; Keall PJ
    Med Phys; 2015 May; 42(5):2113-24. PubMed ID: 25979006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of an in-vivo proton beam range check method in an anthropomorphic pelvic phantom using dose measurements.
    Bentefour el H; Tang S; Cascio EW; Testa M; Samuel D; Prieels D; Gottschalk B; Lu HM
    Med Phys; 2015 Apr; 42(4):1936-47. PubMed ID: 25832084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Technical Note: Experimental verification of magnetic field-induced beam deflection and Bragg peak displacement for MR-integrated proton therapy.
    Schellhammer SM; Gantz S; Lühr A; Oborn BM; Bussmann M; Hoffmann AL
    Med Phys; 2018 Jul; 45(7):3429-3434. PubMed ID: 29763970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A pencil beam algorithm for magnetic resonance image-guided proton therapy.
    Padilla-Cabal F; Georg D; Fuchs H
    Med Phys; 2018 May; 45(5):2195-2204. PubMed ID: 29532490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction and compensation of magnetic beam deflection in MR-integrated proton therapy: a method optimized regarding accuracy, versatility and speed.
    Schellhammer SM; Hoffmann AL
    Phys Med Biol; 2017 Feb; 62(4):1548-1564. PubMed ID: 28121631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ionoacoustic application of an optical hydrophone to detect proton beam range in water.
    Sueyasu S; Takayanagi T; Miyazaki K; Kuriyama Y; Ishi Y; Uesugi T; Unlu MB; Kudo N; Chen Y; Kasamatsu K; Fujii M; Kobayashi M; Rohringer W; Matsuura T
    Med Phys; 2023 Apr; 50(4):2438-2449. PubMed ID: 36565440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of beam purity and scanner complexity on proton CT accuracy.
    Piersimoni P; Ramos-Méndez J; Geoghegan T; Bashkirov VA; Schulte RW; Faddegon BA
    Med Phys; 2017 Jan; 44(1):284-298. PubMed ID: 28066887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Commissioning a beam line for MR-guided particle therapy assisted by in silico methods.
    Fuchs H; Padilla-Cabal F; Oborn BM; Georg D
    Med Phys; 2023 Feb; 50(2):1019-1028. PubMed ID: 36504399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Luminescence imaging of water during proton-beam irradiation for range estimation.
    Yamamoto S; Toshito T; Okumura S; Komori M
    Med Phys; 2015 Nov; 42(11):6498-506. PubMed ID: 26520739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Technical Note: Design and commissioning of a water phantom for proton dosimetry in magnetic fields.
    Fuchs H; Padilla-Cabal F; Hummel A; Georg D
    Med Phys; 2021 Jan; 48(1):505-512. PubMed ID: 33222211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of secondary particles on the magnetic field generated by a proton pencil beam: a finite-element analysis based on Geant4-DNA simulations.
    Rädler M; Buizza G; Kawula M; Palaniappan P; Gianoli C; Baroni G; Paganelli C; Parodi K; Riboldi M
    Med Phys; 2023 Feb; 50(2):1000-1018. PubMed ID: 36346042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical detection threshold of the proton-acoustic range verification technique.
    Ahmad M; Xiang L; Yousefi S; Xing L
    Med Phys; 2015 Oct; 42(10):5735-44. PubMed ID: 26429247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a storage phosphor imaging system for proton pencil beam spot profile determination.
    Setianegara J; Mazur TR; Hao Y; Yang D; Harold Li H
    Med Phys; 2021 Sep; 48(9):5459-5471. PubMed ID: 34318488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.